Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Mike Wu

HarperValleyBank: A Domain-Specific Spoken Dialog Corpus


Oct 26, 2020
Mike Wu, Jonathan Nafziger, Anthony Scodary, Andrew Maas

* 9 pages content, 5 pages supplement 

  Access Paper or Ask Questions

Viewmaker Networks: Learning Views for Unsupervised Representation Learning


Oct 14, 2020
Alex Tamkin, Mike Wu, Noah Goodman


  Access Paper or Ask Questions

A Simple Framework for Uncertainty in Contrastive Learning


Oct 05, 2020
Mike Wu, Noah Goodman

* 8 pages main text 

  Access Paper or Ask Questions

Conditional Negative Sampling for Contrastive Learning of Visual Representations


Oct 05, 2020
Mike Wu, Milan Mosse, Chengxu Zhuang, Daniel Yamins, Noah Goodman

* 8 pages, 4 pages supplement 

  Access Paper or Ask Questions

On Mutual Information in Contrastive Learning for Visual Representations


Jun 05, 2020
Mike Wu, Chengxu Zhuang, Milan Mosse, Daniel Yamins, Noah Goodman

* 8 pages content; 15 pages supplement with proofs 

  Access Paper or Ask Questions

Variational Item Response Theory: Fast, Accurate, and Expressive


Feb 01, 2020
Mike Wu, Richard L. Davis, Benjamin W. Domingue, Chris Piech, Noah Goodman

* 11 pages of content with supplement 

  Access Paper or Ask Questions

Multimodal Generative Models for Compositional Representation Learning


Dec 11, 2019
Mike Wu, Noah Goodman

* 24 pages content; 7 pages appendix 

  Access Paper or Ask Questions

Gradient Boosting Machine: A Survey


Aug 19, 2019
Zhiyuan He, Danchen Lin, Thomas Lau, Mike Wu


  Access Paper or Ask Questions

Optimizing for Interpretability in Deep Neural Networks with Tree Regularization


Aug 14, 2019
Mike Wu, Sonali Parbhoo, Michael C. Hughes, Volker Roth, Finale Doshi-Velez

* arXiv admin note: substantial text overlap with arXiv:1908.04494, arXiv:1711.06178 

  Access Paper or Ask Questions

Regional Tree Regularization for Interpretability in Black Box Models


Aug 13, 2019
Mike Wu, Sonali Parbhoo, Michael Hughes, Ryan Kindle, Leo Celi, Maurizio Zazzi, Volker Roth, Finale Doshi-Velez


  Access Paper or Ask Questions

Generative Grading: Neural Approximate Parsing for Automated Student Feedback


May 23, 2019
Ali Malik, Mike Wu, Vrinda Vasavada, Jinpeng Song, John Mitchell, Noah Goodman, Chris Piech

* 8 pages + supplement 

  Access Paper or Ask Questions

Pragmatic inference and visual abstraction enable contextual flexibility during visual communication


Mar 28, 2019
Judith Fan, Robert Hawkins, Mike Wu, Noah Goodman

* 29 pages; 5 figures; submitted draft of manuscript 

  Access Paper or Ask Questions

Meta-Amortized Variational Inference and Learning


Feb 05, 2019
Kristy Choi, Mike Wu, Noah Goodman, Stefano Ermon

* First 2 authors contributed equally 

  Access Paper or Ask Questions

Zero Shot Learning for Code Education: Rubric Sampling with Deep Learning Inference


Sep 05, 2018
Mike Wu, Milan Mosse, Noah Goodman, Chris Piech

* 8 pages 

  Access Paper or Ask Questions

Multimodal Generative Models for Scalable Weakly-Supervised Learning


May 18, 2018
Mike Wu, Noah Goodman

* 8 pages with supplement 

  Access Paper or Ask Questions

Beyond Sparsity: Tree Regularization of Deep Models for Interpretability


Nov 16, 2017
Mike Wu, Michael C. Hughes, Sonali Parbhoo, Maurizio Zazzi, Volker Roth, Finale Doshi-Velez

* To appear in AAAI 2018. Contains 9-page main paper and appendix with supplementary material 

  Access Paper or Ask Questions

Spreadsheet Probabilistic Programming


Jun 14, 2016
Mike Wu, Yura Perov, Frank Wood, Hongseok Yang


  Access Paper or Ask Questions

Position and Vector Detection of Blind Spot motion with the Horn-Schunck Optical Flow


Mar 24, 2016
Stephen Yu, Mike Wu


  Access Paper or Ask Questions

Financial Market Prediction


Mar 08, 2015
Mike Wu

* 12 pages 

  Access Paper or Ask Questions