Abstract:Glioblastoma, an aggressive brain cancer, is amongst the most lethal of all cancers. Expression of the O6-methylguanine-DNA-methyltransferase (MGMT) gene in glioblastoma tumor tissue is of clinical importance as it has a significant effect on the efficacy of Temozolomide, the primary chemotherapy treatment administered to glioblastoma patients. Currently, MGMT methylation is determined through an invasive brain biopsy and subsequent genetic analysis of the extracted tumor tissue. In this work, we present novel Bayesian classifiers that make probabilistic predictions of MGMT methylation status based on radiomic features extracted from FLAIR-sequence magnetic resonance imagery (MRIs). We implement local radiomic techniques to produce radiomic activation maps and analyze MRIs for the MGMT biomarker based on statistical features of raw voxel-intensities. We demonstrate the ability for simple Bayesian classifiers to provide a boost in predictive performance when modelling local radiomic data rather than global features. The presented techniques provide a non-invasive MRI-based approach to determining MGMT methylation status in glioblastoma patients.
Abstract:Diabetic retinopathy (DR) is a retinal microvascular condition that emerges in diabetic patients. DR will continue to be a leading cause of blindness worldwide, with a predicted 191.0 million globally diagnosed patients in 2030. Microaneurysms, hemorrhages, exudates, and cotton wool spots are common signs of DR. However, they can be small and hard for human eyes to detect. Early detection of DR is crucial for effective clinical treatment. Existing methods to classify images require much time for feature extraction and selection, and are limited in their performance. Convolutional Neural Networks (CNNs), as an emerging deep learning (DL) method, have proven their potential in image classification tasks. In this paper, comprehensive experimental studies of implementing state-of-the-art CNNs for the detection and classification of DR are conducted in order to determine the top performing classifiers for the task. Five CNN classifiers, namely Inception-V3, VGG19, VGG16, ResNet50, and InceptionResNetV2, are evaluated through experiments. They categorize medical images into five different classes based on DR severity. Data augmentation and transfer learning techniques are applied since annotated medical images are limited and imbalanced. Experimental results indicate that the ResNet50 classifier has top performance for binary classification and that the InceptionResNetV2 classifier has top performance for multi-class DR classification.