Abstract:This work investigates how robot-mediated physicality influences the perception of social-physical interactions with virtual characters. ETHOS (Encountered-Type Haptics for On-demand Social interaction) is an encountered-type haptic display that integrates a torque-controlled manipulator and interchangeable props with a VR headset to enable three gestures: object handovers, fist bumps, and high fives. We conducted a user study to examine how ETHOS adds physicality to virtual character interactions and how this affects presence, realism, enjoyment, and connection metrics. Each participant experienced one interaction under three conditions: no physicality (NP), static physicality (SP), and dynamic physicality (DP). SP extended the purely virtual baseline (NP) by introducing tangible props for direct contact, while DP further incorporated motion and impact forces to emulate natural touch. Results show presence increased stepwise from NP to SP to DP. Realism, enjoyment, and connection also improved with added physicality, though differences between SP and DP were not significant. Comfort remained consistent across conditions, indicating no added psychological friction. These findings demonstrate the experiential value of ETHOS and motivate the integration of encountered-type haptics into socially meaningful VR experiences.
Abstract:Automatic speech recognition (ASR) techniques have become powerful tools, enhancing efficiency in law enforcement scenarios. To ensure fairness for demographic groups in different acoustic environments, ASR engines must be tested across a variety of speakers in realistic settings. However, describing the fairness discrepancies between models with confidence remains a challenge. Meanwhile, most public ASR datasets are insufficient to perform a satisfying fairness evaluation. To address the limitations, we built FairLENS - a systematic fairness evaluation framework. We propose a novel and adaptable evaluation method to examine the fairness disparity between different models. We also collected a fairness evaluation dataset covering multiple scenarios and demographic dimensions. Leveraging this framework, we conducted fairness assessments on 1 open-source and 11 commercially available state-of-the-art ASR models. Our results reveal that certain models exhibit more biases than others, serving as a fairness guideline for users to make informed choices when selecting ASR models for a given real-world scenario. We further explored model biases towards specific demographic groups and observed that shifts in the acoustic domain can lead to the emergence of new biases.