Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Michael Arbel

Annealed Flow Transport Monte Carlo


Feb 15, 2021
Michael Arbel, Alexander G. D. G. Matthews, Arnaud Doucet


  Access Paper or Ask Questions

Deep Reinforcement Learning with Dynamic Optimism


Feb 09, 2021
Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel


  Access Paper or Ask Questions

The Unreasonable Effectiveness of Patches in Deep Convolutional Kernels Methods


Jan 19, 2021
Louis Thiry, Michael Arbel, Eugene Belilovsky, Edouard Oyallon

* International Conference on Learning Representation (ICLR 2021), 2021, Vienna (online), Austria 

  Access Paper or Ask Questions

Efficient Wasserstein Natural Gradients for Reinforcement Learning


Oct 12, 2020
Ted Moskovitz, Michael Arbel, Ferenc Huszar, Arthur Gretton


  Access Paper or Ask Questions

Estimating Barycenters of Measures in High Dimensions


Jul 14, 2020
Samuel Cohen, Michael Arbel, Marc Peter Deisenroth

* In submission 

  Access Paper or Ask Questions

A Non-Asymptotic Analysis for Stein Variational Gradient Descent


Jun 17, 2020
Anna Korba, Adil Salim, Michael Arbel, Giulia Luise, Arthur Gretton


  Access Paper or Ask Questions

Synchronizing Probability Measures on Rotations via Optimal Transport


Apr 01, 2020
Tolga Birdal, Michael Arbel, Umut ┼×im┼čekli, Leonidas Guibas

* Accepted for publication at CVPR 2020, includes supplementary material. Project website: https://github.com/SynchInVision/probsync 

  Access Paper or Ask Questions

KALE: When Energy-Based Learning Meets Adversarial Training


Mar 10, 2020
Michael Arbel, Liang Zhou, Arthur Gretton


  Access Paper or Ask Questions

Kernelized Wasserstein Natural Gradient


Oct 25, 2019
Michael Arbel, Arthur Gretton, Wuchen Li, Guido Montufar


  Access Paper or Ask Questions

Maximum Mean Discrepancy Gradient Flow


Jun 11, 2019
Michael Arbel, Anna Korba, Adil Salim, Arthur Gretton


  Access Paper or Ask Questions

On gradient regularizers for MMD GANs


Oct 27, 2018
Michael Arbel, Dougal J. Sutherland, Mikołaj Bińkowski, Arthur Gretton

* Code available at https://github.com/MichaelArbel/Scaled-MMD-GAN . v2: NIPS camera-ready version 

  Access Paper or Ask Questions

Kernel Conditional Exponential Family


Apr 08, 2018
Michael Arbel, Arthur Gretton


  Access Paper or Ask Questions

Demystifying MMD GANs


Mar 21, 2018
Mikołaj Bińkowski, Dougal J. Sutherland, Michael Arbel, Arthur Gretton

* Published at ICLR 2018: https://openreview.net/forum?id=r1lUOzWCW . v4: actually-final version: non-existence of unbiased estimators for IPMs and FID; clarity edits to the main proof 

  Access Paper or Ask Questions

Efficient and principled score estimation with Nystr├Âm kernel exponential families


Mar 13, 2018
Dougal J. Sutherland, Heiko Strathmann, Michael Arbel, Arthur Gretton

* v5: Final version to be published at AISTATS 2018 

  Access Paper or Ask Questions