Abstract:Accurately quantifying the increased risks of climate extremes requires generating large ensembles of climate realization across a wide range of emissions scenarios, which is computationally challenging for conventional Earth System Models. We propose GEN2, a generative prediction-correction framework for an efficient and accurate forecast of the extreme event statistics. The prediction step is constructed as a conditional Gaussian emulator, followed by a non-Gaussian machine-learning (ML) correction step. The ML model is trained on pairs of the reference data and the emulated fields nudged towards the reference, to ensure the training is robust to chaos. We first validate the accuracy of our model on historical ERA5 data and then demonstrate the extrapolation capabilities on various future climate change scenarios. When trained on a single realization of one warming scenario, our model accurately predicts the statistics of extreme events in different scenarios, successfully extrapolating beyond the distribution of training data.
Abstract:EEG-based emotion recognition (EER) is garnering increasing attention due to its potential in understanding and analyzing human emotions. Recently, significant advancements have been achieved using various deep learning-based techniques to address the EER problem. However, the absence of a convincing benchmark and open-source codebase complicates fair comparisons between different models and poses reproducibility challenges for practitioners. These issues considerably impede progress in this field. In light of this, we propose a comprehensive benchmark and algorithm library (LibEER) for fair comparisons in EER by making most of the implementation details of different methods consistent and using the same single codebase in PyTorch. In response to these challenges, we propose LibEER, a comprehensive benchmark and algorithm library for fair comparisons in EER, by ensuring consistency in the implementation details of various methods and utilizing a single codebase in PyTorch. LibEER establishes a unified evaluation framework with standardized experimental settings, enabling unbiased evaluations of over ten representative deep learning-based EER models across the four most commonly used datasets. Additionally, we conduct an exhaustive and reproducible comparison of the performance and efficiency of popular models, providing valuable insights for researchers in selecting and designing EER models. We aspire for our work to not only lower the barriers for beginners entering the field of EEG-based emotion recognition but also promote the standardization of research in this domain, thereby fostering steady development. The source code is available at \url{https://github.com/ButterSen/LibEER}.