Abstract:The field of computational pathology has recently seen rapid advances driven by the development of modern vision foundation models (FMs), typically trained on vast collections of pathology images. Recent studies demonstrate that increasing the training data set and model size and integrating domain-specific image processing techniques can significantly enhance the model's performance on downstream tasks. Building on these insights, our work incorporates several recent modifications to the standard DINOv2 framework from the literature to optimize the training of pathology FMs. We also apply a post-training procedure for fine-tuning models on higher-resolution images to further enrich the information encoded in the embeddings. We present three novel pathology FMs trained on up to two orders of magnitude fewer WSIs than those used to train other state-of-the-art FMs while demonstrating a comparable or superior performance on downstream tasks. Even the model trained on TCGA alone (12k WSIs) outperforms most existing FMs and, on average, matches Virchow2, the second-best FM published to date. This suggests that there still remains a significant potential for further improving the models and algorithms used to train pathology FMs to take full advantage of the vast data collections.
Abstract:To improve the prediction of cancer survival using whole-slide images and transcriptomics data, it is crucial to capture both modality-shared and modality-specific information. However, multimodal frameworks often entangle these representations, limiting interpretability and potentially suppressing discriminative features. To address this, we propose Disentangled and Interpretable Multimodal Attention Fusion (DIMAF), a multimodal framework that separates the intra- and inter-modal interactions within an attention-based fusion mechanism to learn distinct modality-specific and modality-shared representations. We introduce a loss based on Distance Correlation to promote disentanglement between these representations and integrate Shapley additive explanations to assess their relative contributions to survival prediction. We evaluate DIMAF on four public cancer survival datasets, achieving a relative average improvement of 1.85% in performance and 23.7% in disentanglement compared to current state-of-the-art multimodal models. Beyond improved performance, our interpretable framework enables a deeper exploration of the underlying interactions between and within modalities in cancer biology.