Abstract:Diffusion models have significantly improved text-to-image generation, producing high-quality, realistic images from textual descriptions. Beyond generation, object-level image editing remains a challenging problem, requiring precise modifications while preserving visual coherence. Existing text-based instructional editing methods struggle with localized shape and layout transformations, often introducing unintended global changes. Image interaction-based approaches offer better accuracy but require manual human effort to provide precise guidance. To reduce this manual effort while maintaining a high image editing accuracy, in this paper, we propose POEM, a framework for Precise Object-level Editing using Multimodal Large Language Models (MLLMs). POEM leverages MLLMs to analyze instructional prompts and generate precise object masks before and after transformation, enabling fine-grained control without extensive user input. This structured reasoning stage guides the diffusion-based editing process, ensuring accurate object localization and transformation. To evaluate our approach, we introduce VOCEdits, a benchmark dataset based on PASCAL VOC 2012, augmented with instructional edit prompts, ground-truth transformations, and precise object masks. Experimental results show that POEM outperforms existing text-based image editing approaches in precision and reliability while reducing manual effort compared to interaction-based methods.
Abstract:Diffusion models have demonstrated their utility as learned priors for solving various inverse problems. However, most existing approaches are limited to linear inverse problems. This paper exploits the efficient and unsupervised posterior sampling framework of Denoising Diffusion Restoration Models (DDRM) for the solution of nonlinear phase retrieval problem, which requires reconstructing an image from its noisy intensity-only measurements such as Fourier intensity. The approach combines the model-based alternating-projection methods with the DDRM to utilize pretrained unconditional diffusion priors for phase retrieval. The performance is demonstrated through both simulations and experimental data. Results demonstrate the potential of this approach for improving the alternating-projection methods as well as its limitations.