Abstract:Modern vision--language models (VLMs) are increasingly used to interpret and generate educational content, yet their semantic outputs remain challenging to verify, reproduce, and audit over time. Inconsistencies across model families, inference settings, and computing environments undermine the reliability of AI-generated instructional material, particularly in high-stakes and quantitative STEM domains. This work introduces SlideChain, a blockchain-backed provenance framework designed to provide verifiable integrity for multimodal semantic extraction at scale. Using the SlideChain Slides Dataset-a curated corpus of 1,117 medical imaging lecture slides from a university course-we extract concepts and relational triples from four state-of-the-art VLMs and construct structured provenance records for every slide. SlideChain anchors cryptographic hashes of these records on a local EVM (Ethereum Virtual Machine)-compatible blockchain, providing tamper-evident auditability and persistent semantic baselines. Through the first systematic analysis of semantic disagreement, cross-model similarity, and lecture-level variability in multimodal educational content, we reveal pronounced cross-model discrepancies, including low concept overlap and near-zero agreement in relational triples on many slides. We further evaluate gas usage, throughput, and scalability under simulated deployment conditions, and demonstrate perfect tamper detection along with deterministic reproducibility across independent extraction runs. Together, these results show that SlideChain provides a practical and scalable step toward trustworthy, verifiable multimodal educational pipelines, supporting long-term auditability, reproducibility, and integrity for AI-assisted instructional systems.
Abstract:Traditional lecture videos offer flexibility but lack mechanisms for real-time clarification, forcing learners to search externally when confusion arises. Recent advances in large language models and neural avatars provide new opportunities for interactive learning, yet existing systems typically lack lecture awareness, rely on cloud-based services, or fail to integrate retrieval and avatar-delivered explanations in a unified, privacy-preserving pipeline. We present ALIVE, an Avatar-Lecture Interactive Video Engine that transforms passive lecture viewing into a dynamic, real-time learning experience. ALIVE operates fully on local hardware and integrates (1) Avatar-delivered lecture generated through ASR transcription, LLM refinement, and neural talking-head synthesis; (2) A content-aware retrieval mechanism that combines semantic similarity with timestamp alignment to surface contextually relevant lecture segments; and (3) Real-time multimodal interaction, enabling students to pause the lecture, ask questions through text or voice, and receive grounded explanations either as text or as avatar-delivered responses. To maintain responsiveness, ALIVE employs lightweight embedding models, FAISS-based retrieval, and segmented avatar synthesis with progressive preloading. We demonstrate the system on a complete medical imaging course, evaluate its retrieval accuracy, latency characteristics, and user experience, and show that ALIVE provides accurate, content-aware, and engaging real-time support. ALIVE illustrates how multimodal AI-when combined with content-aware retrieval and local deployment-can significantly enhance the pedagogical value of recorded lectures, offering an extensible pathway toward next-generation interactive learning environments.
Abstract:Activation functions are fundamental for enabling nonlinear representations in deep neural networks. However, the standard rectified linear unit (ReLU) often suffers from inactive or "dead" neurons caused by its hard zero cutoff. To address this issue, we introduce N-ReLU (Noise-ReLU), a zero-mean stochastic extension of ReLU that replaces negative activations with Gaussian noise while preserving the same expected output. This expectation-aligned formulation maintains gradient flow in inactive regions and acts as an annealing-style regularizer during training. Experiments on the MNIST dataset using both multilayer perceptron (MLP) and convolutional neural network (CNN) architectures show that N-ReLU achieves accuracy comparable to or slightly exceeding that of ReLU, LeakyReLU, PReLU, GELU, and RReLU at moderate noise levels (sigma = 0.05-0.10), with stable convergence and no dead neurons observed. These results demonstrate that lightweight Gaussian noise injection offers a simple yet effective mechanism to enhance optimization robustness without modifying network structures or introducing additional parameters.
Abstract:Question-answering systems for Bengali have seen limited development, particularly in domain-specific applications. Leveraging advancements in natural language processing, this paper explores a fine-tuned BERT-Bangla model to address this gap. It presents the development of a question-answering system for Bengali using a fine-tuned BERT-Bangla model in a closed domain. The dataset was sourced from Khulna University of Engineering \& Technology's (KUET) website and other relevant texts. The system was trained and evaluated with 2500 question-answer pairs generated from curated data. Key metrics, including the Exact Match (EM) score and F1 score, were used for evaluation, achieving scores of 55.26\% and 74.21\%, respectively. The results demonstrate promising potential for domain-specific Bengali question-answering systems. Further refinements are needed to improve performance for more complex queries.