Abstract:Understanding the spatial and temporal dynamics of automated vehicle (AV) crash severity is critical for advancing urban mobility safety and infrastructure planning. In this work, we introduce ST-GraphNet, a spatio-temporal graph neural network framework designed to model and predict AV crash severity by using both fine-grained and region-aggregated spatial graphs. Using a balanced dataset of 2,352 real-world AV-related crash reports from Texas (2024), including geospatial coordinates, crash timestamps, SAE automation levels, and narrative descriptions, we construct two complementary graph representations: (1) a fine-grained graph with individual crash events as nodes, where edges are defined via spatio-temporal proximity; and (2) a coarse-grained graph where crashes are aggregated into Hexagonal Hierarchical Spatial Indexing (H3)-based spatial cells, connected through hexagonal adjacency. Each node in the graph is enriched with multimodal data, including semantic, spatial, and temporal attributes, including textual embeddings from crash narratives using a pretrained Sentence-BERT model. We evaluate various graph neural network (GNN) architectures, such as Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), and Dynamic Spatio-Temporal GCN (DSTGCN), to classify crash severity and predict high-risk regions. Our proposed ST-GraphNet, which utilizes a DSTGCN backbone on the coarse-grained H3 graph, achieves a test accuracy of 97.74\%, substantially outperforming the best fine-grained model (64.7\% test accuracy). These findings highlight the effectiveness of spatial aggregation, dynamic message passing, and multi-modal feature integration in capturing the complex spatio-temporal patterns underlying AV crash severity.
Abstract:This systematic review explores the theoretical foundations, evolution, applications, and future potential of Kolmogorov-Arnold Networks (KAN), a neural network model inspired by the Kolmogorov-Arnold representation theorem. KANs distinguish themselves from traditional neural networks by using learnable, spline-parameterized functions instead of fixed activation functions, allowing for flexible and interpretable representations of high-dimensional functions. This review details KAN's architectural strengths, including adaptive edge-based activation functions that improve parameter efficiency and scalability in applications such as time series forecasting, computational biomedicine, and graph learning. Key advancements, including Temporal-KAN, FastKAN, and Partial Differential Equation (PDE) KAN, illustrate KAN's growing applicability in dynamic environments, enhancing interpretability, computational efficiency, and adaptability for complex function approximation tasks. Additionally, this paper discusses KAN's integration with other architectures, such as convolutional, recurrent, and transformer-based models, showcasing its versatility in complementing established neural networks for tasks requiring hybrid approaches. Despite its strengths, KAN faces computational challenges in high-dimensional and noisy data settings, motivating ongoing research into optimization strategies, regularization techniques, and hybrid models. This paper highlights KAN's role in modern neural architectures and outlines future directions to improve its computational efficiency, interpretability, and scalability in data-intensive applications.