Abstract:Personalized search demands the ability to model users' evolving, multi-dimensional information needs; a challenge for systems constrained by static profiles or monolithic retrieval pipelines. We present SPARK (Search Personalization via Agent-Driven Retrieval and Knowledge-sharing), a framework in which coordinated persona-based large language model (LLM) agents deliver task-specific retrieval and emergent personalization. SPARK formalizes a persona space defined by role, expertise, task context, and domain, and introduces a Persona Coordinator that dynamically interprets incoming queries to activate the most relevant specialized agents. Each agent executes an independent retrieval-augmented generation process, supported by dedicated long- and short-term memory stores and context-aware reasoning modules. Inter-agent collaboration is facilitated through structured communication protocols, including shared memory repositories, iterative debate, and relay-style knowledge transfer. Drawing on principles from cognitive architectures, multi-agent coordination theory, and information retrieval, SPARK models how emergent personalization properties arise from distributed agent behaviors governed by minimal coordination rules. The framework yields testable predictions regarding coordination efficiency, personalization quality, and cognitive load distribution, while incorporating adaptive learning mechanisms for continuous persona refinement. By integrating fine-grained agent specialization with cooperative retrieval, SPARK provides insights for next-generation search systems capable of capturing the complexity, fluidity, and context sensitivity of human information-seeking behavior.
Abstract:Distinguishing fake or untrue news from satire or humor poses a unique challenge due to their overlapping linguistic features and divergent intent. This study develops WISE (Web Information Satire and Fakeness Evaluation) framework which benchmarks eight lightweight transformer models alongside two baseline models on a balanced dataset of 20,000 samples from Fakeddit, annotated as either fake news or satire. Using stratified 5-fold cross-validation, we evaluate models across comprehensive metrics including accuracy, precision, recall, F1-score, ROC-AUC, PR-AUC, MCC, Brier score, and Expected Calibration Error. Our evaluation reveals that MiniLM, a lightweight model, achieves the highest accuracy (87.58%) among all models, while RoBERTa-base achieves the highest ROC-AUC (95.42%) and strong accuracy (87.36%). DistilBERT offers an excellent efficiency-accuracy trade-off with 86.28\% accuracy and 93.90\% ROC-AUC. Statistical tests confirm significant performance differences between models, with paired t-tests and McNemar tests providing rigorous comparisons. Our findings highlight that lightweight models can match or exceed baseline performance, offering actionable insights for deploying misinformation detection systems in real-world, resource-constrained settings.
Abstract:The rapid expansion of interconnected devices, autonomous systems, and AI applications has created severe fragmentation in adaptive transport systems, where diverse protocols and context sources remain isolated. This survey provides the first systematic investigation of the Model Context Protocol (MCP) as a unifying paradigm, highlighting its ability to bridge protocol-level adaptation with context-aware decision making. Analyzing established literature, we show that existing efforts have implicitly converged toward MCP-like architectures, signaling a natural evolution from fragmented solutions to standardized integration frameworks. We propose a five-category taxonomy covering adaptive mechanisms, context-aware frameworks, unification models, integration strategies, and MCP-enabled architectures. Our findings reveal three key insights: traditional transport protocols have reached the limits of isolated adaptation, MCP's client-server and JSON-RPC structure enables semantic interoperability, and AI-driven transport demands integration paradigms uniquely suited to MCP. Finally, we present a research roadmap positioning MCP as a foundation for next-generation adaptive, context-aware, and intelligent transport infrastructures.