Abstract:The rapid expansion of interconnected devices, autonomous systems, and AI applications has created severe fragmentation in adaptive transport systems, where diverse protocols and context sources remain isolated. This survey provides the first systematic investigation of the Model Context Protocol (MCP) as a unifying paradigm, highlighting its ability to bridge protocol-level adaptation with context-aware decision making. Analyzing established literature, we show that existing efforts have implicitly converged toward MCP-like architectures, signaling a natural evolution from fragmented solutions to standardized integration frameworks. We propose a five-category taxonomy covering adaptive mechanisms, context-aware frameworks, unification models, integration strategies, and MCP-enabled architectures. Our findings reveal three key insights: traditional transport protocols have reached the limits of isolated adaptation, MCP's client-server and JSON-RPC structure enables semantic interoperability, and AI-driven transport demands integration paradigms uniquely suited to MCP. Finally, we present a research roadmap positioning MCP as a foundation for next-generation adaptive, context-aware, and intelligent transport infrastructures.
Abstract:Understanding the spatial and temporal dynamics of automated vehicle (AV) crash severity is critical for advancing urban mobility safety and infrastructure planning. In this work, we introduce ST-GraphNet, a spatio-temporal graph neural network framework designed to model and predict AV crash severity by using both fine-grained and region-aggregated spatial graphs. Using a balanced dataset of 2,352 real-world AV-related crash reports from Texas (2024), including geospatial coordinates, crash timestamps, SAE automation levels, and narrative descriptions, we construct two complementary graph representations: (1) a fine-grained graph with individual crash events as nodes, where edges are defined via spatio-temporal proximity; and (2) a coarse-grained graph where crashes are aggregated into Hexagonal Hierarchical Spatial Indexing (H3)-based spatial cells, connected through hexagonal adjacency. Each node in the graph is enriched with multimodal data, including semantic, spatial, and temporal attributes, including textual embeddings from crash narratives using a pretrained Sentence-BERT model. We evaluate various graph neural network (GNN) architectures, such as Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), and Dynamic Spatio-Temporal GCN (DSTGCN), to classify crash severity and predict high-risk regions. Our proposed ST-GraphNet, which utilizes a DSTGCN backbone on the coarse-grained H3 graph, achieves a test accuracy of 97.74\%, substantially outperforming the best fine-grained model (64.7\% test accuracy). These findings highlight the effectiveness of spatial aggregation, dynamic message passing, and multi-modal feature integration in capturing the complex spatio-temporal patterns underlying AV crash severity.