Abstract:Topic segmentation using generative Large Language Models (LLMs) remains relatively unexplored. Previous methods use semantic similarity between sentences, but such models lack the long range dependencies and vast knowledge found in LLMs. In this work, we propose an overlapping and recursive prompting strategy using sentence enumeration. We also support the adoption of the boundary similarity evaluation metric. Results show that LLMs can be more effective segmenters than existing methods, but issues remain to be solved before they can be relied upon for topic segmentation.
Abstract:Screening patients for clinical trial eligibility remains a manual, time-consuming, and resource-intensive process. We present a secure, scalable proof-of-concept system for Artificial Intelligence (AI)-augmented patient-trial matching that addresses key implementation challenges: integrating heterogeneous electronic health record (EHR) data, facilitating expert review, and maintaining rigorous security standards. Leveraging open-source, reasoning-enabled large language models (LLMs), the system moves beyond binary classification to generate structured eligibility assessments with interpretable reasoning chains that support human-in-the-loop review. This decision support tool represents eligibility as a dynamic state rather than a fixed determination, identifying matches when available and offering actionable recommendations that could render a patient eligible in the future. The system aims to reduce coordinator burden, intelligently broaden the set of trials considered for each patient and guarantee comprehensive auditability of all AI-generated outputs.