Alert button
Picture for Maximilian Rohleder

Maximilian Rohleder

Alert button

Pattern Recognition Lab, FAU Erlangen-Nürnberg, Germany, Siemens Healthcare GmbH, Forchheim, Germany

Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction

Add code
Bookmark button
Alert button
Mar 04, 2024
Noah Maul, Annette Birkhold, Fabian Wagner, Mareike Thies, Maximilian Rohleder, Philipp Berg, Markus Kowarschik, Andreas Maier

Figure 1 for Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction
Figure 2 for Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction
Figure 3 for Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction
Figure 4 for Physics-Informed Learning for Time-Resolved Angiographic Contrast Agent Concentration Reconstruction
Viaarxiv icon

Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model

Add code
Bookmark button
Alert button
Feb 13, 2023
Noah Maul, Katharina Zinn, Fabian Wagner, Mareike Thies, Maximilian Rohleder, Laura Pfaff, Markus Kowarschik, Annette Birkhold, Andreas Maier

Figure 1 for Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model
Figure 2 for Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model
Figure 3 for Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model
Figure 4 for Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model
Viaarxiv icon

Gradient-Based Geometry Learning for Fan-Beam CT Reconstruction

Add code
Bookmark button
Alert button
Dec 05, 2022
Mareike Thies, Fabian Wagner, Noah Maul, Lukas Folle, Manuela Meier, Maximilian Rohleder, Linda-Sophie Schneider, Laura Pfaff, Mingxuan Gu, Jonas Utz, Felix Denzinger, Michael Manhart, Andreas Maier

Figure 1 for Gradient-Based Geometry Learning for Fan-Beam CT Reconstruction
Figure 2 for Gradient-Based Geometry Learning for Fan-Beam CT Reconstruction
Figure 3 for Gradient-Based Geometry Learning for Fan-Beam CT Reconstruction
Figure 4 for Gradient-Based Geometry Learning for Fan-Beam CT Reconstruction
Viaarxiv icon

On the Benefit of Dual-domain Denoising in a Self-supervised Low-dose CT Setting

Add code
Bookmark button
Alert button
Nov 03, 2022
Fabian Wagner, Mareike Thies, Laura Pfaff, Oliver Aust, Sabrina Pechmann, Daniela Weidner, Noah Maul, Maximilian Rohleder, Mingxuan Gu, Jonas Utz, Felix Denzinger, Andreas Maier

Figure 1 for On the Benefit of Dual-domain Denoising in a Self-supervised Low-dose CT Setting
Figure 2 for On the Benefit of Dual-domain Denoising in a Self-supervised Low-dose CT Setting
Figure 3 for On the Benefit of Dual-domain Denoising in a Self-supervised Low-dose CT Setting
Figure 4 for On the Benefit of Dual-domain Denoising in a Self-supervised Low-dose CT Setting
Viaarxiv icon