Abstract:Topological descriptors have been increasingly utilized for capturing multiscale structural information in relational data. In this work, we consider various filtrations on the (box) product of graphs and the effect on their outputs on the topological descriptors - the Euler characteristic (EC) and persistent homology (PH). In particular, we establish a complete characterization of the expressive power of EC on general color-based filtrations. We also show that the PH descriptors of (virtual) graph products contain strictly more information than the computation on individual graphs, whereas EC does not. Additionally, we provide algorithms to compute the PH diagrams of the product of vertex- and edge-level filtrations on the graph product. We also substantiate our theoretical analysis with empirical investigations on runtime analysis, expressivity, and graph classification performance. Overall, this work paves way for powerful graph persistent descriptors via product filtrations. Code is available at https://github.com/Aalto-QuML/tda_graph_product.
Abstract:Including intricate topological information (e.g., cycles) provably enhances the expressivity of message-passing graph neural networks (GNNs) beyond the Weisfeiler-Leman (WL) hierarchy. Consequently, Persistent Homology (PH) methods are increasingly employed for graph representation learning. In this context, recent works have proposed decorating classical PH diagrams with vertex and edge features for improved expressivity. However, due to their dependence on features, these methods still fail to capture basic graph structural information. In this paper, we propose SpectRe -- a new topological descriptor for graphs that integrates spectral information into PH diagrams. Notably, SpectRe is strictly more expressive than existing descriptors on graphs. We also introduce notions of global and local stability to analyze existing descriptors and establish that SpectRe is locally stable. Finally, experiments on synthetic and real-world datasets demonstrate the effectiveness of SpectRe and its potential to enhance the capabilities of graph models in relevant learning tasks.