Abstract:Recent advances in reinforcement learning (RL) and Human-in-the-Loop (HitL) learning have made human-AI collaboration easier for humans to team with AI agents. Leveraging human expertise and experience with AI in intelligent systems can be efficient and beneficial. Still, it is unclear to what extent human-AI collaboration will be successful, and how such teaming performs compared to humans or AI agents only. In this work, we show that learning from humans is effective and that human-AI collaboration outperforms human-controlled and fully autonomous AI agents in a complex simulation environment. In addition, we have developed a new simulator for critical infrastructure protection, focusing on a scenario where AI-powered drones and human teams collaborate to defend an airport against enemy drone attacks. We develop a user interface to allow humans to assist AI agents effectively. We demonstrated that agents learn faster while learning from policy correction compared to learning from humans or agents. Furthermore, human-AI collaboration requires lower mental and temporal demands, reduces human effort, and yields higher performance than if humans directly controlled all agents. In conclusion, we show that humans can provide helpful advice to the RL agents, allowing them to improve learning in a multi-agent setting.
Abstract:Procedural Content Generation (PCG) is the algorithmic generation of content, often applied to games. PCG and PCG via Machine Learning (PCGML) have appeared in published games. However, it can prove difficult to apply these approaches in the early stages of an in-development game. PCG requires expertise in representing designer notions of quality in rules or functions, and PCGML typically requires significant training data, which may not be available early in development. In this paper, we introduce Tree-based Reconstructive Partitioning (TRP), a novel PCGML approach aimed to address this problem. Our results, across two domains, demonstrate that TRP produces levels that are more playable and coherent, and that the approach is more generalizable with less training data. We consider TRP to be a promising new approach that can afford the introduction of PCGML into the early stages of game development without requiring human expertise or significant training data.
Abstract:Procedural Content Generation via Machine Learning (PCGML) faces a significant hurdle that sets it apart from other fields, such as image or text generation, which is limited annotated data. Many existing methods for procedural level generation via machine learning require a secondary representation besides level images. However, the current methods for obtaining such representations are laborious and time-consuming, which contributes to this problem. In this work, we aim to address this problem by utilizing gameplay videos of two human-annotated games to develop a novel multi-tail framework that learns to perform simultaneous level translation and generation. The translation tail of our framework can convert gameplay video frames to an equivalent secondary representation, while its generation tail can produce novel level segments. Evaluation results and comparisons between our framework and baselines suggest that combining the level generation and translation tasks can lead to an overall improved performance regarding both tasks. This represents a possible solution to limited annotated level data, and we demonstrate the potential for future versions to generalize to unseen games.
Abstract:Game level blending via machine learning, the process of combining features of game levels to create unique and novel game levels using Procedural Content Generation via Machine Learning (PCGML) techniques, has gained increasing popularity in recent years. However, many existing techniques rely on human-annotated level representations, which limits game level blending to a limited number of annotated games. Even with annotated games, researchers often need to author an additional shared representation to make blending possible. In this paper, we present a novel approach to game level blending that employs Clustering-based Tile Embeddings (CTE), a learned level representation technique that can serve as a level representation for unannotated games and a unified level representation across games without the need for human annotation. CTE represents game level tiles as a continuous vector representation, unifying their visual, contextual, and behavioral information. We apply this approach to two classic Nintendo games, Lode Runner and The Legend of Zelda. We run an evaluation comparing the CTE representation to a common, human-annotated representation in the blending task and find that CTE has comparable or better performance without the need for human annotation.
Abstract:This paper investigates a combinational creativity approach to transfer learning to improve the performance of deep neural network-based models for music generation on out-of-distribution (OOD) genres. We identify Iranian folk music as an example of such an OOD genre for MusicVAE, a large generative music model. We find that a combinational creativity transfer learning approach can efficiently adapt MusicVAE to an Iranian folk music dataset, indicating potential for generating underrepresented music genres in the future.
Abstract:We introduce the concept of Procedural Content Generation via Knowledge Transformation (PCG-KT), a new lens and framework for characterizing PCG methods and approaches in which content generation is enabled by the process of knowledge transformation -- transforming knowledge derived from one domain in order to apply it in another. Our work is motivated by a substantial number of recent PCG works that focus on generating novel content via repurposing derived knowledge. Such works have involved, for example, performing transfer learning on models trained on one game's content to adapt to another game's content, as well as recombining different generative distributions to blend the content of two or more games. Such approaches arose in part due to limitations in PCG via Machine Learning (PCGML) such as producing generative models for games lacking training data and generating content for entirely new games. In this paper, we categorize such approaches under this new lens of PCG-KT by offering a definition and framework for describing such methods and surveying existing works using this framework. Finally, we conclude by highlighting open problems and directions for future research in this area.
Abstract:Real-Time Strategy (RTS) game unit generation is an unexplored area of Procedural Content Generation (PCG) research, which leaves the question of how to automatically generate interesting and balanced units unanswered. Creating unique and balanced units can be a difficult task when designing an RTS game, even for humans. Having an automated method of designing units could help developers speed up the creation process as well as find new ideas. In this work we propose a method of generating balanced and useful RTS units. We draw on Search-Based PCG and a fitness function based on Monte Carlo Tree Search (MCTS). We present ten units generated by our system designed to be used in the game microRTS, as well as results demonstrating that these units are unique, useful, and balanced.
Abstract:Player modelling is the field of study associated with understanding players. One pursuit in this field is affect prediction: the ability to predict how a game will make a player feel. We present novel improvements to affect prediction by using a deep convolutional neural network (CNN) to predict player experience trained on game event logs in tandem with localized level structure information. We test our approach on levels based on Super Mario Bros. (Infinite Mario Bros.) and Super Mario Bros.: The Lost Levels (Gwario), as well as original Super Mario Bros. levels. We outperform prior work, and demonstrate the utility of training on player logs, even when lacking them at test time for cross-domain player modelling.
Abstract:In fighting games, individual players of the same skill level often exhibit distinct strategies from one another through their gameplay. Despite this, the majority of AI agents for fighting games have only a single strategy for each "level" of difficulty. To make AI opponents more human-like, we'd ideally like to see multiple different strategies at each level of difficulty, a concept we refer to as "multidimensional" difficulty. In this paper, we introduce a diversity-based deep reinforcement learning approach for generating a set of agents of similar difficulty that utilize diverse strategies. We find this approach outperforms a baseline trained with specialized, human-authored reward functions in both diversity and performance.
Abstract:There has been significant research interest in Procedural Level Generation via Machine Learning (PLGML), applying ML techniques to automated level generation. One recent trend is in the direction of learning representations for level design via embeddings, such as tile embeddings. Tile Embeddings are continuous vector representations of game levels unifying their visual, contextual and behavioural information. However, the original tile embedding struggled to generate levels with skewed tile distributions. For instance, Super Mario Bros. (SMB) wherein a majority of tiles represent the background. To remedy this, we present a modified tile embedding representation referred to as Clustering-based Tile Embedding (CTE). Further, we employ clustering to discretize the continuous CTE representation and present a novel two-step level generation to leverage both these representations. We evaluate the performance of our approach in generating levels for seen and unseen games with skewed tile distributions and outperform the original tile embeddings.