Abstract:AI agents powered by large language models are increasingly capable of autonomously completing complex, multi-step tasks using external tools. Yet, they still fall short of human-level performance in most domains including computer use, software development, and research. Their growing autonomy and ability to interact with the outside world, also introduces safety and security risks including potentially misaligned actions and adversarial manipulation. We argue that human-in-the-loop agentic systems offer a promising path forward, combining human oversight and control with AI efficiency to unlock productivity from imperfect systems. We introduce Magentic-UI, an open-source web interface for developing and studying human-agent interaction. Built on a flexible multi-agent architecture, Magentic-UI supports web browsing, code execution, and file manipulation, and can be extended with diverse tools via Model Context Protocol (MCP). Moreover, Magentic-UI presents six interaction mechanisms for enabling effective, low-cost human involvement: co-planning, co-tasking, multi-tasking, action guards, and long-term memory. We evaluate Magentic-UI across four dimensions: autonomous task completion on agentic benchmarks, simulated user testing of its interaction capabilities, qualitative studies with real users, and targeted safety assessments. Our findings highlight Magentic-UI's potential to advance safe and efficient human-agent collaboration.
Abstract:Constraining deep neural networks (DNNs) to learn individual logic types per node, as performed using the DiffLogic network architecture, opens the door to model-specific explanation techniques that quell the complexity inherent to DNNs. Inspired by principles of circuit analysis from computer engineering, this work presents an algorithm (eXpLogic) for producing saliency maps which explain input patterns that activate certain functions. The eXpLogic explanations: (1) show the exact set of inputs responsible for a decision, which helps interpret false negative and false positive predictions, (2) highlight common input patterns that activate certain outputs, and (3) help reduce the network size to improve class-specific inference. To evaluate the eXpLogic saliency map, we introduce a metric that quantifies how much an input changes before switching a model's class prediction (the SwitchDist) and use this metric to compare eXpLogic against the Vanilla Gradients (VG) and Integrated Gradient (IG) methods. Generally, we show that eXpLogic saliency maps are better at predicting which inputs will change the class score. These maps help reduce the network size and inference times by 87\% and 8\%, respectively, while having a limited impact (-3.8\%) on class-specific predictions. The broader value of this work to machine learning is in demonstrating how certain DNN architectures promote explainability, which is relevant to healthcare, defense, and law.