Recent studies on visual anomaly detection (AD) of industrial objects/textures have achieved quite good performance. They consider an unsupervised setting, specifically the one-class setting, in which we assume the availability of a set of normal (\textit{i.e.}, anomaly-free) images for training. In this paper, we consider a more challenging scenario of unsupervised AD, in which we detect anomalies in a given set of images that might contain both normal and anomalous samples. The setting does not assume the availability of known normal data and thus is completely free from human annotation, which differs from the standard AD considered in recent studies. For clarity, we call the setting blind anomaly detection (BAD). We show that BAD can be converted into a local outlier detection problem and propose a novel method named PatchCluster that can accurately detect image- and pixel-level anomalies. Experimental results show that PatchCluster shows a promising performance without the knowledge of normal data, even comparable to the SOTA methods applied in the one-class setting needing it.
Previous works on unsupervised industrial anomaly detection mainly focus on local structural anomalies such as cracks and color contamination. While achieving significantly high detection performance on this kind of anomaly, they are faced with logical anomalies that violate the long-range dependencies such as a normal object placed in the wrong position. In this paper, based on previous knowledge distillation works, we propose to use two students (local and global) to better mimic the teacher's behavior. The local student, which is used in previous studies mainly focuses on structural anomaly detection while the global student pays attention to logical anomalies. To further encourage the global student's learning to capture long-range dependencies, we design the global context condensing block (GCCB) and propose a contextual affinity loss for the student training and anomaly scoring. Experimental results show the proposed method doesn't need cumbersome training techniques and achieves a new state-of-the-art performance on the MVTec LOCO AD dataset.
Smartphones equipped with a multi-camera system comprising multiple cameras with different field-of-view (FoVs) are becoming more prevalent. These camera configurations are compatible with reference-based SR and video SR, which can be executed simultaneously while recording video on the device. Thus, combining these two SR methods can improve image quality. Recently, Lee et al. have presented such a method, RefVSR. In this paper, we consider how to optimally utilize the observations obtained, including input low-resolution (LR) video and reference (Ref) video. RefVSR extends conventional video SR quite simply, aggregating the LR and Ref inputs over time in a single bidirectional stream. However, considering the content difference between LR and Ref images due to their FoVs, we can derive the maximum information from the two image sequences by aggregating them independently in the temporal direction. Then, we propose an improved method, RefVSR++, which can aggregate two features in parallel in the temporal direction, one for aggregating the fused LR and Ref inputs and the other for Ref inputs over time. Furthermore, we equip RefVSR++ with enhanced mechanisms to align image features over time, which is the key to the success of video SR. We experimentally show that RefVSR++ outperforms RefVSR by over 1dB in PSNR, achieving the new state-of-the-art.
Despite the recent advancement in the study of removing motion blur in an image, it is still hard to deal with strong blurs. While there are limits in removing blurs from a single image, it has more potential to use multiple images, e.g., using an additional image as a reference to deblur a blurry image. A typical setting is deburring an image using a nearby sharp image(s) in a video sequence, as in the studies of video deblurring. This paper proposes a better method to use the information present in a reference image. The method does not need a strong assumption on the reference image. We can utilize an alternative shot of the identical scene, just like in video deblurring, or we can even employ a distinct image from another scene. Our method first matches local patches of the target and reference images and then fuses their features to estimate a sharp image. We employ a patch-based feature matching strategy to solve the difficult problem of matching the blurry image with the sharp reference. Our method can be integrated into pre-existing networks designed for single image deblurring. The experimental results show the effectiveness of the proposed method.
Open-set object detection (OSOD) has recently attracted considerable attention. It is to detect unknown objects while correctly detecting/classifying known objects. We first point out that the scenario of OSOD considered in recent studies, which considers an unlimited variety of unknown objects similar to open-set recognition (OSR), has a fundamental issue. That is, we cannot determine what to detect and what not for such unlimited unknown objects, which is necessary for detection tasks. This issue leads to difficulty with the evaluation of methods' performance on unknown object detection. We then introduce a novel scenario of OSOD, which deals with only unknown objects that share the super-category with known objects. It has many real-world applications, e.g., detecting an increasing number of fine-grained objects. This new setting is free from the above issue and evaluation difficulty. Moreover, it makes detecting unknown objects more realistic owing to the visual similarity between known and unknown objects. We show through experimental results that a simple method based on the uncertainty of class prediction from standard detectors outperforms the current state-of-the-art OSOD methods tested in the previous setting.
Current state-of-the-art methods for image captioning employ region-based features, as they provide object-level information that is essential to describe the content of images; they are usually extracted by an object detector such as Faster R-CNN. However, they have several issues, such as lack of contextual information, the risk of inaccurate detection, and the high computational cost. The first two could be resolved by additionally using grid-based features. However, how to extract and fuse these two types of features is uncharted. This paper proposes a Transformer-only neural architecture, dubbed GRIT (Grid- and Region-based Image captioning Transformer), that effectively utilizes the two visual features to generate better captions. GRIT replaces the CNN-based detector employed in previous methods with a DETR-based one, making it computationally faster. Moreover, its monolithic design consisting only of Transformers enables end-to-end training of the model. This innovative design and the integration of the dual visual features bring about significant performance improvement. The experimental results on several image captioning benchmarks show that GRIT outperforms previous methods in inference accuracy and speed.
In this paper, we consider the problem in defocus image deblurring. Previous classical methods follow two-steps approaches, i.e., first defocus map estimation and then the non-blind deblurring. In the era of deep learning, some researchers have tried to address these two problems by CNN. However, the simple concatenation of defocus map, which represents the blur level, leads to suboptimal performance. Considering the spatial variant property of the defocus blur and the blur level indicated in the defocus map, we employ the defocus map as conditional guidance to adjust the features from the input blurring images instead of simple concatenation. Then we propose a simple but effective network with spatial modulation based on the defocus map. To achieve this, we design a network consisting of three sub-networks, including the defocus map estimation network, a condition network that encodes the defocus map into condition features, and the defocus deblurring network that performs spatially dynamic modulation based on the condition features. Moreover, the spatially dynamic modulation is based on an affine transform function to adjust the features from the input blurry images. Experimental results show that our method can achieve better quantitative and qualitative evaluation performance than the existing state-of-the-art methods on the commonly used public test datasets.
Reconstructing ghosting-free high dynamic range (HDR) images of dynamic scenes from a set of multi-exposure images is a challenging task, especially with large object motion and occlusions, leading to visible artifacts using existing methods. To address this problem, we propose a deep network that tries to learn multi-scale feature flow guided by the regularized loss. It first extracts multi-scale features and then aligns features from non-reference images. After alignment, we use residual channel attention blocks to merge the features from different images. Extensive qualitative and quantitative comparisons show that our approach achieves state-of-the-art performance and produces excellent results where color artifacts and geometric distortions are significantly reduced.
Unsupervised domain adaptation (UDA) adapts a model trained on one domain to a novel domain using only unlabeled data. So many studies have been conducted, especially for semantic segmentation due to its high annotation cost. The existing studies stick to the basic assumption that no labeled sample is available for the new domain. However, this assumption has several issues. First, it is pretty unrealistic, considering the standard practice of ML to confirm the model's performance before its deployment; the confirmation needs labeled data. Second, any UDA method will have a few hyper-parameters, needing a certain amount of labeled data. To rectify this misalignment with reality, we rethink UDA from a data-centric point of view. Specifically, we start with the assumption that we do have access to a minimum level of labeled data. Then, we ask how many labeled samples are necessary for finding satisfactory hyper-parameters of existing UDA methods. How well does it work if we use the same data to train the model, e.g., finetuning? We conduct experiments to answer these questions with popular scenarios, {GTA5, SYNTHIA}$\rightarrow$Cityscapes. Our findings are as follows: i) for some UDA methods, good hyper-parameters can be found with only a few labeled samples (i.e., images), e.g., five, but this does not apply to others, and ii) finetuning outperforms most existing UDA methods with only ten labeled images.
This study is concerned with few-shot segmentation, i.e., segmenting the region of an unseen object class in a query image, given support image(s) of its instances. The current methods rely on the pretrained CNN features of the support and query images. The key to good performance depends on the proper fusion of their mid-level and high-level features; the former contains shape-oriented information, while the latter has class-oriented information. Current state-of-the-art methods follow the approach of Tian et al., which gives the mid-level features the primary role and the high-level features the secondary role. In this paper, we reinterpret this widely employed approach by redifining the roles of the multi-level features; we swap the primary and secondary roles. Specifically, we regard that the current methods improve the initial estimate generated from the high-level features using the mid-level features. This reinterpretation suggests a new application of the current methods: to apply the same network multiple times to iteratively update the estimate of the object's region, starting from its initial estimate. Our experiments show that this method is effective and has updated the previous state-of-the-art on COCO-20$^i$ in the 1-shot and 5-shot settings and on PASCAL-5$^i$ in the 1-shot setting.