Abstract:The advent of generative AI exemplified by large language models (LLMs) opens new ways to represent and compute geographic information and transcend the process of geographic knowledge production, driving geographic information systems (GIS) towards autonomous GIS. Leveraging LLMs as the decision core, autonomous GIS can independently generate and execute geoprocessing workflows to perform spatial analysis. In this vision paper, we elaborate on the concept of autonomous GIS and present a framework that defines its five autonomous goals, five levels of autonomy, five core functions, and three operational scales. We demonstrate how autonomous GIS could perform geospatial data retrieval, spatial analysis, and map making with four proof-of-concept GIS agents. We conclude by identifying critical challenges and future research directions, including fine-tuning and self-growing decision cores, autonomous modeling, and examining the ethical and practical implications of autonomous GIS. By establishing the groundwork for a paradigm shift in GIScience, this paper envisions a future where GIS moves beyond traditional workflows to autonomously reason, derive, innovate, and advance solutions to pressing global challenges.
Abstract:Identifying words that impact a task's performance more than others is a challenge in natural language processing. Transformers models have recently addressed this issue by incorporating an attention mechanism that assigns greater attention (i.e., relevance) scores to some words than others. Because of the attention mechanism's high computational cost, transformer models usually have an input-length limitation caused by hardware constraints. This limitation applies to many transformers, including the well-known bidirectional encoder representations of the transformer (BERT) model. In this paper, we examined BERT's attention assignment mechanism, focusing on two questions: (1) How can attention be employed to reduce input length? (2) How can attention be used as a control mechanism for conditional text generation? We investigated these questions in the context of a text classification task. We discovered that BERT's early layers assign more critical attention scores for text classification tasks compared to later layers. We demonstrated that the first layer's attention sums could be used to filter tokens in a given sequence, considerably decreasing the input length while maintaining good test accuracy. We also applied filtering, which uses a compute-efficient semantic similarities algorithm, and discovered that retaining approximately 6\% of the original sequence is sufficient to obtain 86.5\% accuracy. Finally, we showed that we could generate data in a stable manner and indistinguishable from the original one by only using a small percentage (10\%) of the tokens with high attention scores according to BERT's first layer.