Abstract:Max-Linear Bayesian Networks (MLBNs) provide a powerful framework for causal inference in extreme-value settings; we consider MLBNs with noise parameters with a given topology in terms of the max-plus algebra by taking its logarithm. Then, we show that an estimator of a parameter for each edge in a directed acyclic graph (DAG) is distributed normally. We end this paper with computational experiments with the expectation and maximization (EM) algorithm and quadratic optimization.
Abstract:Signal analysis and classification is fraught with high levels of noise and perturbation. Computer-vision-based deep learning models applied to spectrograms have proven useful in the field of signal classification and detection; however, these methods aren't designed to handle the low signal-to-noise ratios inherent within non-vision signal processing tasks. While they are powerful, they are currently not the method of choice in the inherently noisy and dynamic critical infrastructure domain, such as smart-grid sensing, anomaly detection, and non-intrusive load monitoring.