Abstract:Out-of-distribution (OOD) detection and segmentation are crucial for deploying machine learning models in safety-critical applications such as autonomous driving and robot-assisted surgery. While prior research has primarily focused on unimodal image data, real-world applications are inherently multimodal, requiring the integration of multiple modalities for improved OOD detection. A key challenge is the lack of supervision signals from unknown data, leading to overconfident predictions on OOD samples. To address this challenge, we propose Feature Mixing, an extremely simple and fast method for multimodal outlier synthesis with theoretical support, which can be further optimized to help the model better distinguish between in-distribution (ID) and OOD data. Feature Mixing is modality-agnostic and applicable to various modality combinations. Additionally, we introduce CARLA-OOD, a novel multimodal dataset for OOD segmentation, featuring synthetic OOD objects across diverse scenes and weather conditions. Extensive experiments on SemanticKITTI, nuScenes, CARLA-OOD datasets, and the MultiOOD benchmark demonstrate that Feature Mixing achieves state-of-the-art performance with a $10 \times$ to $370 \times$ speedup. Our source code and dataset will be available at https://github.com/mona4399/FeatureMixing.
Abstract:Autonomous systems that rely on Machine Learning (ML) utilize online fault tolerance mechanisms, such as runtime monitors, to detect ML prediction errors and maintain safety during operation. However, the lack of human-interpretable explanations for these errors can hinder the creation of strong assurances about the system's safety and reliability. This paper introduces a novel fuzzy-based monitor tailored for ML perception components. It provides human-interpretable explanations about how different operating conditions affect the reliability of perception components and also functions as a runtime safety monitor. We evaluated our proposed monitor using naturalistic driving datasets as part of an automated driving case study. The interpretability of the monitor was evaluated and we identified a set of operating conditions in which the perception component performs reliably. Additionally, we created an assurance case that links unit-level evidence of \textit{correct} ML operation to system-level \textit{safety}. The benchmarking demonstrated that our monitor achieved a better increase in safety (i.e., absence of hazardous situations) while maintaining availability (i.e., ability to perform the mission) compared to state-of-the-art runtime ML monitors in the evaluated dataset.