Abstract:Carbapenemase-Producing Enterobacteriace poses a critical concern for infection prevention and control in hospitals. However, predictive modeling of previously highlighted CPE-associated risks such as readmission, mortality, and extended length of stay (LOS) remains underexplored, particularly with modern deep learning approaches. This study introduces an eXplainable AI modeling framework to investigate CPE impact on patient outcomes from Electronic Medical Records data of an Irish hospital. We analyzed an inpatient dataset from an Irish acute hospital, incorporating diagnostic codes, ward transitions, patient demographics, infection-related variables and contact network features. Several Transformer-based architectures were benchmarked alongside traditional machine learning models. Clinical outcomes were predicted, and XAI techniques were applied to interpret model decisions. Our framework successfully demonstrated the utility of Transformer-based models, with TabTransformer consistently outperforming baselines across multiple clinical prediction tasks, especially for CPE acquisition (AUROC and sensitivity). We found infection-related features, including historical hospital exposure, admission context, and network centrality measures, to be highly influential in predicting patient outcomes and CPE acquisition risk. Explainability analyses revealed that features like "Area of Residence", "Admission Ward" and prior admissions are key risk factors. Network variables like "Ward PageRank" also ranked highly, reflecting the potential value of structural exposure information. This study presents a robust and explainable AI framework for analyzing complex EMR data to identify key risk factors and predict CPE-related outcomes. Our findings underscore the superior performance of the Transformer models and highlight the importance of diverse clinical and network features.




Abstract:Similar to the majority of deep learning applications, diagnosing skin diseases using computer vision and deep learning often requires a large volume of data. However, obtaining sufficient data for particular types of facial skin conditions can be difficult due to privacy concerns. As a result, conditions like Rosacea are often understudied in computer-aided diagnosis. The limited availability of data for facial skin conditions has led to the investigation of alternative methods for computer-aided diagnosis. In recent years, Generative Adversarial Networks (GANs), mainly variants of StyleGANs, have demonstrated promising results in generating synthetic facial images. In this study, for the first time, a small dataset of Rosacea with 300 full-face images is utilized to further investigate the possibility of generating synthetic data. The preliminary experiments show how fine-tuning the model and varying experimental settings significantly affect the fidelity of the Rosacea features. It is demonstrated that $R_1$ Regularization strength helps achieve high-fidelity details. Additionally, this study presents qualitative evaluations of synthetic/generated faces by expert dermatologists and non-specialist participants. The quantitative evaluation is presented using a few validation metric(s). Furthermore a number of limitations and future directions are discussed. Code and generated dataset are available at: \url{https://github.com/thinkercache/stylegan2-ada-pytorch}