Abstract:Counterfactual explanations play a pivotal role in explainable artificial intelligence (XAI) by offering intuitive, human-understandable alternatives that elucidate machine learning model decisions. Despite their significance, existing methods for generating counterfactuals often require constant access to the predictive model, involve computationally intensive optimization for each instance and lack the flexibility to adapt to new user-defined constraints without retraining. In this paper, we propose DiCoFlex, a novel model-agnostic, conditional generative framework that produces multiple diverse counterfactuals in a single forward pass. Leveraging conditional normalizing flows trained solely on labeled data, DiCoFlex addresses key limitations by enabling real-time user-driven customization of constraints such as sparsity and actionability at inference time. Extensive experiments on standard benchmark datasets show that DiCoFlex outperforms existing methods in terms of validity, diversity, proximity, and constraint adherence, making it a practical and scalable solution for counterfactual generation in sensitive decision-making domains.
Abstract:Clustering tabular data remains a significant open challenge in data analysis and machine learning. Unlike for image data, similarity between tabular records often varies across datasets, making the definition of clusters highly dataset-dependent. Furthermore, the absence of supervised signals complicates hyperparameter tuning in deep learning clustering methods, frequently resulting in unstable performance. To address these issues and reduce the need for per-dataset tuning, we adopt an emerging approach in deep learning: zero-shot learning. We propose ZEUS, a self-contained model capable of clustering new datasets without any additional training or fine-tuning. It operates by decomposing complex datasets into meaningful components that can then be clustered effectively. Thanks to pre-training on synthetic datasets generated from a latent-variable prior, it generalizes across various datasets without requiring user intervention. To the best of our knowledge, ZEUS is the first zero-shot method capable of generating embeddings for tabular data in a fully unsupervised manner. Experimental results demonstrate that it performs on par with or better than traditional clustering algorithms and recent deep learning-based methods, while being significantly faster and more user-friendly.
Abstract:Feature selection in deep learning remains a critical challenge, particularly for high-dimensional tabular data where interpretability and computational efficiency are paramount. We present GFSNetwork, a novel neural architecture that performs differentiable feature selection through temperature-controlled Gumbel-Sigmoid sampling. Unlike traditional methods, where the user has to define the requested number of features, GFSNetwork selects it automatically during an end-to-end process. Moreover, GFSNetwork maintains constant computational overhead regardless of the number of input features. We evaluate GFSNetwork on a series of classification and regression benchmarks, where it consistently outperforms recent methods including DeepLasso, attention maps, as well as traditional feature selectors, while using significantly fewer features. Furthermore, we validate our approach on real-world metagenomic datasets, demonstrating its effectiveness in high-dimensional biological data. Concluding, our method provides a scalable solution that bridges the gap between neural network flexibility and traditional feature selection interpretability. We share our python implementation of GFSNetwork at https://github.com/wwydmanski/GFSNetwork, as well as a PyPi package (gfs_network).
Abstract:In recent years, there has been a growing interest in explainable AI methods. We want not only to make accurate predictions using sophisticated neural networks but also to understand what the model's decision is based on. One of the fundamental levels of interpretability is to provide counterfactual examples explaining the rationale behind the decision and identifying which features, and to what extent, must be modified to alter the model's outcome. To address these requirements, we introduce HyConEx, a classification model based on deep hypernetworks specifically designed for tabular data. Owing to its unique architecture, HyConEx not only provides class predictions but also delivers local interpretations for individual data samples in the form of counterfactual examples that steer a given sample toward an alternative class. While many explainable methods generated counterfactuals for external models, there have been no interpretable classifiers simultaneously producing counterfactual samples so far. HyConEx achieves competitive performance on several metrics assessing classification accuracy and fulfilling the criteria of a proper counterfactual attack. This makes HyConEx a distinctive deep learning model, which combines predictions and explainers as an all-in-one neural network. The code is available at https://github.com/gmum/HyConEx.
Abstract:Deep conditional generative models are excellent tools for creating high-quality images and editing their attributes. However, training modern generative models from scratch is very expensive and requires large computational resources. In this paper, we introduce StyleAutoEncoder (StyleAE), a lightweight AutoEncoder module, which works as a plugin for pre-trained generative models and allows for manipulating the requested attributes of images. The proposed method offers a cost-effective solution for training deep generative models with limited computational resources, making it a promising technique for a wide range of applications. We evaluate StyleAutoEncoder by combining it with StyleGAN, which is currently one of the top generative models. Our experiments demonstrate that StyleAutoEncoder is at least as effective in manipulating image attributes as the state-of-the-art algorithms based on invertible normalizing flows. However, it is simpler, faster, and gives more freedom in designing neural
Abstract:Although deep learning models have had great success in natural language processing and computer vision, we do not observe comparable improvements in the case of tabular data, which is still the most common data type used in biological, industrial and financial applications. In particular, it is challenging to transfer large-scale pre-trained models to downstream tasks defined on small tabular datasets. To address this, we propose VisTabNet -- a cross-modal transfer learning method, which allows for adapting Vision Transformer (ViT) with pre-trained weights to process tabular data. By projecting tabular inputs to patch embeddings acceptable by ViT, we can directly apply a pre-trained Transformer Encoder to tabular inputs. This approach eliminates the conceptual cost of designing a suitable architecture for processing tabular data, while reducing the computational cost of training the model from scratch. Experimental results on multiple small tabular datasets (less than 1k samples) demonstrate VisTabNet's superiority, outperforming both traditional ensemble methods and recent deep learning models. The proposed method goes beyond conventional transfer learning practice and shows that pre-trained image models can be transferred to solve tabular problems, extending the boundaries of transfer learning.
Abstract:Masked Image Modeling (MIM) has emerged as a popular method for Self-Supervised Learning (SSL) of visual representations. However, for high-level perception tasks, MIM-pretrained models offer lower out-of-the-box representation quality than the Joint-Embedding Architectures (JEA) - another prominent SSL paradigm. To understand this performance gap, we analyze the information flow in Vision Transformers (ViT) learned by both approaches. We reveal that whereas JEAs construct their representation on a selected set of relevant image fragments, MIM models aggregate nearly whole image content. Moreover, we demonstrate that MIM-trained ViTs retain valuable information within their patch tokens, which is not effectively captured by the global [cls] token representations. Therefore, selective aggregation of relevant patch tokens, without any fine-tuning, results in consistently higher-quality of MIM representations. To our knowledge, we are the first to highlight the lack of effective representation aggregation as an emergent issue of MIM and propose directions to address it, contributing to future advances in Self-Supervised Learning.
Abstract:Single-step retrosynthesis aims to predict a set of reactions that lead to the creation of a target molecule, which is a crucial task in molecular discovery. Although a target molecule can often be synthesized with multiple different reactions, it is not clear how to verify the feasibility of a reaction, because the available datasets cover only a tiny fraction of the possible solutions. Consequently, the existing models are not encouraged to explore the space of possible reactions sufficiently. In this paper, we propose a novel single-step retrosynthesis model, RetroGFN, that can explore outside the limited dataset and return a diverse set of feasible reactions by leveraging a feasibility proxy model during the training. We show that RetroGFN achieves competitive results on standard top-k accuracy while outperforming existing methods on round-trip accuracy. Moreover, we provide empirical arguments in favor of using round-trip accuracy which expands the notion of feasibility with respect to the standard top-k accuracy metric.
Abstract:Collaborative self-supervised learning has recently become feasible in highly distributed environments by dividing the network layers between client devices and a central server. However, state-of-the-art methods, such as MocoSFL, are optimized for network division at the initial layers, which decreases the protection of the client data and increases communication overhead. In this paper, we demonstrate that splitting depth is crucial for maintaining privacy and communication efficiency in distributed training. We also show that MocoSFL suffers from a catastrophic quality deterioration for the minimal communication overhead. As a remedy, we introduce Momentum-Aligned contrastive Split Federated Learning (MonAcoSFL), which aligns online and momentum client models during training procedure. Consequently, we achieve state-of-the-art accuracy while significantly reducing the communication overhead, making MonAcoSFL more practical in real-world scenarios.
Abstract:Conditional GANs are frequently used for manipulating the attributes of face images, such as expression, hairstyle, pose, or age. Even though the state-of-the-art models successfully modify the requested attributes, they simultaneously modify other important characteristics of the image, such as a person's identity. In this paper, we focus on solving this problem by introducing PluGeN4Faces, a plugin to StyleGAN, which explicitly disentangles face attributes from a person's identity. Our key idea is to perform training on images retrieved from movie frames, where a given person appears in various poses and with different attributes. By applying a type of contrastive loss, we encourage the model to group images of the same person in similar regions of latent space. Our experiments demonstrate that the modifications of face attributes performed by PluGeN4Faces are significantly less invasive on the remaining characteristics of the image than in the existing state-of-the-art models.