Abstract:Manual pruning is labor intensive and represents up to 25% of annual labor costs in fruit production, notably in apple orchards and vineyards where operational challenges and cost constraints limit the adoption of large-scale machinery. In response, a growing body of research is investigating compact, flexible robotic platforms capable of precise pruning in varied terrains, particularly where traditional mechanization falls short. This paper reviews recent advances in autonomous robotic pruning for orchards and vineyards, addressing a critical need in precision agriculture. Our review examines literature published between 2014 and 2024, focusing on innovative contributions across key system components. Special attention is given to recent developments in machine vision, perception, plant skeletonization, and control strategies, areas that have experienced significant influence from advancements in artificial intelligence and machine learning. The analysis situates these technological trends within broader agricultural challenges, including rising labor costs, a decline in the number of young farmers, and the diverse pruning requirements of different fruit species such as apple, grapevine, and cherry trees. By comparing various robotic architectures and methodologies, this survey not only highlights the progress made toward autonomous pruning but also identifies critical open challenges and future research directions. The findings underscore the potential of robotic systems to bridge the gap between manual and mechanized operations, paving the way for more efficient, sustainable, and precise agricultural practices.
Abstract:Ultra-wideband (UWB) technology has shown remarkable potential as a low-cost general solution for robot localization. However, limitations of the UWB signal for precise positioning arise from the disturbances caused by the environment itself, due to reflectance, multi-path effect, and Non-Line-of-Sight (NLOS) conditions. This problem is emphasized in cluttered indoor spaces where service robotic platforms usually operate. Both model-based and learning-based methods are currently under investigation to precisely predict the UWB error patterns. Despite the great capability in approximating strong non-linearity, learning-based methods often do not consider environmental factors and require data collection and re-training for unseen data distributions, making them not practically feasible on a large scale. The goal of this research is to develop a robust and adaptive UWB localization method for indoor confined spaces. A novelty detection technique is used to recognize outlier conditions from nominal UWB range data with a semi-supervised autoencoder. Then, the obtained novelty scores are combined with an Extended Kalman filter, leveraging a dynamic estimation of covariance and bias error for each range measurement received from the UWB anchors. The resulting solution is a compact, flexible, and robust system which enables the localization system to adapt the trustworthiness of UWB data spatially and temporally in the environment. The extensive experimentation conducted with a real robot in a wide range of testing scenarios demonstrates the advantages and benefits of the proposed solution in indoor cluttered spaces presenting NLoS conditions, reaching an average improvement of almost 60% and greater than 25cm of absolute positioning error.
Abstract:Satellites are used for a multitude of applications, including communications, Earth observation, and space science. Neural networks and deep learning-based approaches now represent the state-of-the-art to enhance the performance and efficiency of these tasks. Given that satellites are susceptible to various faults, one critical application of Artificial Intelligence (AI) is fault detection. However, despite the advantages of neural networks, these systems are vulnerable to radiation errors, which can significantly impact their reliability. Ensuring the dependability of these solutions requires extensive testing and validation, particularly using fault injection methods. This study analyses a physics-informed (PI) real-valued non-volume preserving (Real NVP) normalizing flow model for fault detection in space systems, with a focus on resilience to Single-Event Upsets (SEUs). We present a customized fault injection framework in TensorFlow to assess neural network resilience. Fault injections are applied through two primary methods: Layer State injection, targeting internal network components such as weights and biases, and Layer Output injection, which modifies layer outputs across various activations. Fault types include zeros, random values, and bit-flip operations, applied at varying levels and across different network layers. Our findings reveal several critical insights, such as the significance of bit-flip errors in critical bits, that can lead to substantial performance degradation or even system failure. With this work, we aim to exhaustively study the resilience of Real NVP models against errors due to radiation, providing a means to guide the implementation of fault tolerance measures.
Abstract:The field of autonomous navigation for unmanned ground vehicles (UGVs) is in continuous growth and increasing levels of autonomy have been reached in the last few years. However, the task becomes more challenging when the focus is on the exploration of planet surfaces such as Mars. In those situations, UGVs are forced to navigate through unstable and rugged terrains which, inevitably, open the vehicle to more hazards, accidents, and, in extreme cases, complete mission failure. The paper addresses the challenges of autonomous navigation for unmanned ground vehicles in planetary exploration, particularly on Mars, introducing a hybrid architecture for terrain traversability analysis that combines two approaches: appearance-based and geometry-based. The appearance-based method uses semantic segmentation via deep neural networks to classify different terrain types. This is further refined by pixel-level terrain roughness classification obtained from the same RGB image, assigning different costs based on the physical properties of the soil. The geometry-based method complements the appearance-based approach by evaluating the terrain's geometrical features, identifying hazards that may not be detectable by the appearance-based side. The outputs of both methods are combined into a comprehensive hybrid cost map. The proposed architecture was trained on synthetic datasets and developed as a ROS2 application to integrate into broader autonomous navigation systems for harsh environments. Simulations have been performed in Unity, showing the ability of the method to assess online traversability analysis.
Abstract:Novelty detection is a critical task in various engineering fields. Numerous approaches to novelty detection rely on supervised or semi-supervised learning, which requires labelled datasets for training. However, acquiring labelled data, when feasible, can be expensive and time-consuming. For these reasons, unsupervised learning is a powerful alternative that allows performing novelty detection without needing labelled samples. In this study, numerous unsupervised machine learning algorithms for novelty detection are compared, highlighting their strengths and weaknesses in the context of vibration sensing. The proposed framework uses a continuous metric, unlike most traditional methods that merely flag anomalous samples without quantifying the degree of anomaly. Moreover, a new dataset is gathered from an actuator vibrating at specific frequencies to benchmark the algorithms and evaluate the framework. Novel conditions are introduced by altering the input wave signal. Our findings offer valuable insights into the adaptability and robustness of unsupervised learning techniques for real-world novelty detection applications.
Abstract:Achieving social acceptance is one of the main goals of Social Robotic Navigation. Despite this topic has received increasing interest in recent years, most of the research has focused on driving the robotic agent along obstacle-free trajectories, planning around estimates of future human motion to respect personal distances and optimize navigation. However, social interactions in everyday life are also dictated by norms that do not strictly depend on movement, such as when standing at the end of a queue rather than cutting it. In this paper, we propose a novel method to recognize common social scenarios and modify a traditional planner's cost function to adapt to them. This solution enables the robot to carry out different social navigation behaviors that would not arise otherwise, maintaining the robustness of traditional navigation. Our approach allows the robot to learn different social norms with a single learned model, rather than having different modules for each task. As a proof of concept, we consider the tasks of queuing and respect interaction spaces of groups of people talking to one another, but the method can be extended to other human activities that do not involve motion.
Abstract:In the space sector, due to environmental conditions and restricted accessibility, robust fault detection methods are imperative for ensuring mission success and safeguarding valuable assets. This work proposes a novel approach leveraging Physics-Informed Real NVP neural networks, renowned for their ability to model complex and high-dimensional distributions, augmented with a self-supervised task based on sensors' data permutation. It focuses on enhancing fault detection within the satellite multivariate time series. The experiments involve various configurations, including pre-training with self-supervision, multi-task learning, and standalone self-supervised training. Results indicate significant performance improvements across all settings. In particular, employing only the self-supervised loss yields the best overall results, suggesting its efficacy in guiding the network to extract relevant features for fault detection. This study presents a promising direction for improving fault detection in space systems and warrants further exploration in other datasets and applications.
Abstract:The unique challenges posed by the space environment, characterized by extreme conditions and limited accessibility, raise the need for robust and reliable techniques to identify and prevent satellite faults. Fault detection methods in the space sector are required to ensure mission success and to protect valuable assets. In this context, this paper proposes an Artificial Intelligence (AI) based fault detection methodology and evaluates its performance on ADAPT (Advanced Diagnostics and Prognostics Testbed), an Electrical Power System (EPS) dataset, crafted in laboratory by NASA. Our study focuses on the application of a physics-informed (PI) real-valued non-volume preserving (Real NVP) model for fault detection in space systems. The efficacy of this method is systematically compared against other AI approaches such as Gated Recurrent Unit (GRU) and Autoencoder-based techniques. Results show that our physics-informed approach outperforms existing methods of fault detection, demonstrating its suitability for addressing the unique challenges of satellite EPS sub-system faults. Furthermore, we unveil the competitive advantage of physics-informed loss in AI models to address specific space needs, namely robustness, reliability, and power constraints, crucial for space exploration and satellite missions.
Abstract:Human-aware navigation is a complex task for mobile robots, requiring an autonomous navigation system capable of achieving efficient path planning together with socially compliant behaviors. Social planners usually add costs or constraints to the objective function, leading to intricate tuning processes or tailoring the solution to the specific social scenario. Machine Learning can enhance planners' versatility and help them learn complex social behaviors from data. This work proposes an adaptive social planner, using a Deep Reinforcement Learning agent to dynamically adjust the weighting parameters of the cost function used to evaluate trajectories. The resulting planner combines the robustness of the classic Dynamic Window Approach, integrated with a social cost based on the Social Force Model, and the flexibility of learning methods to boost the overall performance on social navigation tasks. Our extensive experimentation on different environments demonstrates the general advantage of the proposed method over static cost planners.
Abstract:Ultra-Wideband (UWB) technology is an emerging low-cost solution for localization in a generic environment. However, UWB signal can be affected by signal reflections and non-line-of-sight (NLoS) conditions between anchors; hence, in a broader sense, the specific geometry of the environment and the disposition of obstructing elements in the map may drastically hinder the reliability of UWB for precise robot localization. This work aims to mitigate this problem by learning a map-specific characterization of the UWB quality signal with a fingerprint semi-supervised novelty detection methodology. An unsupervised autoencoder neural network is trained on nominal UWB map conditions, and then it is used to predict errors derived from the introduction of perturbing novelties in the environment. This work poses a step change in the understanding of UWB localization and its reliability in evolving environmental conditions. The resulting performance of the proposed method is proved by fine-grained experiments obtained with a visual tracking ground truth.