Abstract:Initialization plays a critical role in Deep Neural Network training, directly influencing convergence, stability, and generalization. Common approaches such as Glorot and He initializations rely on randomness, which can produce uneven weight distributions across layer connections. In this paper, we introduce the Sinusoidal initialization, a novel deterministic method that employs sinusoidal functions to construct structured weight matrices expressly to improve the spread and balance of weights throughout the network while simultaneously fostering a more uniform, well-conditioned distribution of neuron activation states from the very first forward pass. Because Sinusoidal initialization begins with weights and activations that are already evenly and efficiently utilized, it delivers consistently faster convergence, greater training stability, and higher final accuracy across a wide range of models, including convolutional neural networks, vision transformers, and large language models. On average, our experiments show an increase of 4.8 % in final validation accuracy and 20.9 % in convergence speed. By replacing randomness with structure, this initialization provides a stronger and more reliable foundation for Deep Learning systems.
Abstract:We introduce the Overfitting-Underfitting Indicator (OUI), a novel tool for monitoring the training dynamics of Deep Neural Networks (DNNs) and identifying optimal regularization hyperparameters. Specifically, we validate that OUI can effectively guide the selection of the Weight Decay (WD) hyperparameter by indicating whether a model is overfitting or underfitting during training without requiring validation data. Through experiments on DenseNet-BC-100 with CIFAR- 100, EfficientNet-B0 with TinyImageNet and ResNet-34 with ImageNet-1K, we show that maintaining OUI within a prescribed interval correlates strongly with improved generalization and validation scores. Notably, OUI converges significantly faster than traditional metrics such as loss or accuracy, enabling practitioners to identify optimal WD (hyperparameter) values within the early stages of training. By leveraging OUI as a reliable indicator, we can determine early in training whether the chosen WD value leads the model to underfit the training data, overfit, or strike a well-balanced trade-off that maximizes validation scores. This enables more precise WD tuning for optimal performance on the tested datasets and DNNs. All code for reproducing these experiments is available at https://github.com/AlbertoFdezHdez/OUI.
Abstract:The number and complexity of artificial intelligence (AI) applications is growing relentlessly. As a result, even with the many algorithmic and mathematical advances experienced over past decades as well as the impressive energy efficiency and computational capacity of current hardware accelerators, training the most powerful and popular deep neural networks comes at very high economic and environmental costs. Recognising that additional optimisations of conventional neural network training is very difficult, this work takes a radically different approach by proposing GreenLightningAI, a new AI system design consisting of a linear model that is capable of emulating the behaviour of deep neural networks by subsetting the model for each particular sample. The new AI system stores the information required to select the system subset for a given sample (referred to as structural information) separately from the linear model parameters (referred to as quantitative knowledge). In this paper we present a proof of concept, showing that the structural information stabilises far earlier than the quantitative knowledge. Additionally, we show experimentally that the structural information can be kept unmodified when re-training the AI system with new samples while still achieving a validation accuracy similar to that obtained when re-training a neural network with similar size. Since the proposed AI system is based on a linear model, multiple copies of the model, trained with different datasets, can be easily combined. This enables faster and greener (re)-training algorithms, including incremental re-training and federated incremental re-training.