Abstract:Initialization plays a critical role in Deep Neural Network training, directly influencing convergence, stability, and generalization. Common approaches such as Glorot and He initializations rely on randomness, which can produce uneven weight distributions across layer connections. In this paper, we introduce the Sinusoidal initialization, a novel deterministic method that employs sinusoidal functions to construct structured weight matrices expressly to improve the spread and balance of weights throughout the network while simultaneously fostering a more uniform, well-conditioned distribution of neuron activation states from the very first forward pass. Because Sinusoidal initialization begins with weights and activations that are already evenly and efficiently utilized, it delivers consistently faster convergence, greater training stability, and higher final accuracy across a wide range of models, including convolutional neural networks, vision transformers, and large language models. On average, our experiments show an increase of 4.8 % in final validation accuracy and 20.9 % in convergence speed. By replacing randomness with structure, this initialization provides a stronger and more reliable foundation for Deep Learning systems.
Abstract:We introduce the Overfitting-Underfitting Indicator (OUI), a novel tool for monitoring the training dynamics of Deep Neural Networks (DNNs) and identifying optimal regularization hyperparameters. Specifically, we validate that OUI can effectively guide the selection of the Weight Decay (WD) hyperparameter by indicating whether a model is overfitting or underfitting during training without requiring validation data. Through experiments on DenseNet-BC-100 with CIFAR- 100, EfficientNet-B0 with TinyImageNet and ResNet-34 with ImageNet-1K, we show that maintaining OUI within a prescribed interval correlates strongly with improved generalization and validation scores. Notably, OUI converges significantly faster than traditional metrics such as loss or accuracy, enabling practitioners to identify optimal WD (hyperparameter) values within the early stages of training. By leveraging OUI as a reliable indicator, we can determine early in training whether the chosen WD value leads the model to underfit the training data, overfit, or strike a well-balanced trade-off that maximizes validation scores. This enables more precise WD tuning for optimal performance on the tested datasets and DNNs. All code for reproducing these experiments is available at https://github.com/AlbertoFdezHdez/OUI.