Abstract:While machine translation is regarded as a "solved problem" for many high-resource languages, close analysis quickly reveals that this is not the case for content that shows challenges such as poetic language, philosophical concepts, multi-layered metaphorical expressions, and more. Sanskrit literature is a prime example of this, as it combines a large number of such challenges in addition to inherent linguistic features like sandhi, compounding, and heavy morphology, which further complicate NLP downstream tasks. It spans multiple millennia of text production time as well as a large breadth of different domains, ranging from ritual formulas via epic narratives, philosophical treatises, poetic verses up to scientific material. As of now, there is a strong lack of publicly available resources that cover these different domains and temporal layers of Sanskrit. We therefore introduce Mitrasamgraha, a high-quality Sanskrit-to-English machine translation dataset consisting of 391,548 bitext pairs, more than four times larger than the largest previously available Sanskrit dataset Itih=asa. It covers a time period of more than three millennia and a broad range of historical Sanskrit domains. In contrast to web-crawled datasets, the temporal and domain annotation of this dataset enables fine-grained study of domain and time period effects on MT performance. We also release a validation set consisting of 5,587 and a test set consisting of 5,552 post-corrected bitext pairs. We conduct experiments benchmarking commercial and open models on this dataset and fine-tune NLLB and Gemma models on the dataset, showing significant improvements, while still recognizing significant challenges in the translation of complex compounds, philosophical concepts, and multi-layered metaphors. We also analyze how in-context learning on this dataset impacts the performance of commercial models
Abstract:Large Language Models (LLMs) are increasingly treated as universal, general-purpose solutions across NLP tasks, particularly in English. But does this assumption hold for low-resource, morphologically rich languages such as Sanskrit? We address this question by comparing instruction-tuned and in-context-prompted LLMs with smaller task-specific encoder-decoder models on the Sanskrit poetry-to-prose conversion task. This task is intrinsically challenging: Sanskrit verse exhibits free word order combined with rigid metrical constraints, and its conversion to canonical prose (anvaya) requires multi-step reasoning involving compound segmentation, dependency resolution, and syntactic linearisation. This makes it an ideal testbed to evaluate whether LLMs can surpass specialised models. For LLMs, we apply instruction fine-tuning on general-purpose models and design in-context learning templates grounded in Paninian grammar and classical commentary heuristics. For task-specific modelling, we fully fine-tune a ByT5-Sanskrit Seq2Seq model. Our experiments show that domain-specific fine-tuning of ByT5-Sanskrit significantly outperforms all instruction-driven LLM approaches. Human evaluation strongly corroborates this result, with scores exhibiting high correlation with Kendall's Tau scores. Additionally, our prompting strategies provide an alternative to fine-tuning when domain-specific verse corpora are unavailable, and the task-specific Seq2Seq model demonstrates robust generalisation on out-of-domain evaluations.
Abstract:The study presents a comprehensive benchmark for retrieving Sanskrit documents using English queries, focusing on the chapters of the Srimadbhagavatam. It employs a tripartite approach: Direct Retrieval (DR), Translation-based Retrieval (DT), and Query Translation (QT), utilizing shared embedding spaces and advanced translation methods to enhance retrieval systems in a RAG framework. The study fine-tunes state-of-the-art models for Sanskrit's linguistic nuances, evaluating models such as BM25, REPLUG, mDPR, ColBERT, Contriever, and GPT-2. It adapts summarization techniques for Sanskrit documents to improve QA processing. Evaluation shows DT methods outperform DR and QT in handling the cross-lingual challenges of ancient texts, improving accessibility and understanding. A dataset of 3,400 English-Sanskrit query-document pairs underpins the study, aiming to preserve Sanskrit scriptures and share their philosophical importance widely. Our dataset is publicly available at https://huggingface.co/datasets/manojbalaji1/anveshana