



Abstract:Multimodal surface material classification plays a critical role in advancing tactile perception for robotic manipulation and interaction. In this paper, we present Surformer v2, an enhanced multi-modal classification architecture designed to integrate visual and tactile sensory streams through a late(decision level) fusion mechanism. Building on our earlier Surformer v1 framework [1], which employed handcrafted feature extraction followed by mid-level fusion architecture with multi-head cross-attention layers, Surformer v2 integrates the feature extraction process within the model itself and shifts to late fusion. The vision branch leverages a CNN-based classifier(Efficient V-Net), while the tactile branch employs an encoder-only transformer model, allowing each modality to extract modality-specific features optimized for classification. Rather than merging feature maps, the model performs decision-level fusion by combining the output logits using a learnable weighted sum, enabling adaptive emphasis on each modality depending on data context and training dynamics. We evaluate Surformer v2 on the Touch and Go dataset [2], a multi-modal benchmark comprising surface images and corresponding tactile sensor readings. Our results demonstrate that Surformer v2 performs well, maintaining competitive inference speed, suitable for real-time robotic applications. These findings underscore the effectiveness of decision-level fusion and transformer-based tactile modeling for enhancing surface understanding in multi-modal robotic perception.
Abstract:Adversarial noise introduces small perturbations in images, misleading deep learning models into misclassification and significantly impacting recognition accuracy. In this study, we analyzed the effects of Fast Gradient Sign Method (FGSM) adversarial noise on image classification and investigated whether training on specific image features can improve robustness. We hypothesize that while adversarial noise perturbs various regions of an image, edges may remain relatively stable and provide essential structural information for classification. To test this, we conducted a series of experiments using brain tumor and COVID datasets. Initially, we trained the models on clean images and then introduced subtle adversarial perturbations, which caused deep learning models to significantly misclassify the images. Retraining on a combination of clean and noisy images led to improved performance. To evaluate the robustness of the edge features, we extracted edges from the original/clean images and trained the models exclusively on edge-based representations. When noise was introduced to the images, the edge-based models demonstrated greater resilience to adversarial attacks compared to those trained on the original or clean images. These results suggest that while adversarial noise is able to exploit complex non-edge regions significantly more than edges, the improvement in the accuracy after retraining is marginally more in the original data as compared to the edges. Thus, leveraging edge-based learning can improve the resilience of deep learning models against adversarial perturbations.