Alert button
Picture for Manfred Paulini

Manfred Paulini

Alert button

on behalf of the CMS Collaboration

Autoencoder-based Online Data Quality Monitoring for the CMS Electromagnetic Calorimeter

Add code
Bookmark button
Alert button
Aug 31, 2023
Abhirami Harilal, Kyungmin Park, Michael Andrews, Manfred Paulini

Viaarxiv icon

DeepSNR: A deep learning foundation for offline gravitational wave detection

Add code
Bookmark button
Alert button
Jul 11, 2022
Michael Andrews, Manfred Paulini, Luke Sellers, Alexey Bobrick, Gianni Martire, Haydn Vestal

Figure 1 for DeepSNR: A deep learning foundation for offline gravitational wave detection
Figure 2 for DeepSNR: A deep learning foundation for offline gravitational wave detection
Figure 3 for DeepSNR: A deep learning foundation for offline gravitational wave detection
Figure 4 for DeepSNR: A deep learning foundation for offline gravitational wave detection
Viaarxiv icon

End-to-End Jet Classification of Boosted Top Quarks with the CMS Open Data

Add code
Bookmark button
Alert button
Apr 19, 2021
Michael Andrews, Bjorn Burkle, Yi-fan Chen, Davide DiCroce, Sergei Gleyzer, Ulrich Heintz, Meenakshi Narain, Manfred Paulini, Nikolas Pervan, Yusef Shafi, Wei Sun, Kun Yang

Figure 1 for End-to-End Jet Classification of Boosted Top Quarks with the CMS Open Data
Figure 2 for End-to-End Jet Classification of Boosted Top Quarks with the CMS Open Data
Figure 3 for End-to-End Jet Classification of Boosted Top Quarks with the CMS Open Data
Figure 4 for End-to-End Jet Classification of Boosted Top Quarks with the CMS Open Data
Viaarxiv icon

End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data

Add code
Bookmark button
Alert button
Feb 21, 2019
Michael Andrews, John Alison, Sitong An, Patrick Bryant, Bjorn Burkle, Sergei Gleyzer, Meenakshi Narain, Manfred Paulini, Barnabas Poczos, Emanuele Usai

Figure 1 for End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data
Figure 2 for End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data
Figure 3 for End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data
Figure 4 for End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data
Viaarxiv icon

End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC

Add code
Bookmark button
Alert button
Jul 31, 2018
Michael Andrews, Manfred Paulini, Sergei Gleyzer, Barnabas Poczos

Figure 1 for End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC
Figure 2 for End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC
Figure 3 for End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC
Figure 4 for End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC
Viaarxiv icon

Machine Learning in High Energy Physics Community White Paper

Add code
Bookmark button
Alert button
Jul 08, 2018
Kim Albertsson, Piero Altoe, Dustin Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Taylor Childers, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Javier Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemysław Karpiński, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark Neubauer, Harvey Newman, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen, Ian Stockdale, Giles Strong, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Omar Zapata

Figure 1 for Machine Learning in High Energy Physics Community White Paper
Figure 2 for Machine Learning in High Energy Physics Community White Paper
Figure 3 for Machine Learning in High Energy Physics Community White Paper
Viaarxiv icon