Abstract:Depression is a significant mental health concern, particularly in professional environments where work-related stress, financial pressure, and lifestyle imbalances contribute to deteriorating well-being. Despite increasing awareness, researchers and practitioners face critical challenges in developing accurate and generalizable predictive models for mental health disorders. Traditional classification approaches often struggle with the complexity of depression, as it is influenced by multifaceted, interdependent factors, including occupational stress, sleep patterns, and job satisfaction. This study addresses these challenges by proposing a stacking-based ensemble learning approach to improve the predictive accuracy of depression classification among professionals. The Depression Professional Dataset has been collected from Kaggle. The dataset comprises demographic, occupational, and lifestyle attributes that influence mental well-being. Our stacking model integrates multiple base learners with a logistic regression-mediated model, effectively capturing diverse learning patterns. The experimental results demonstrate that the proposed model achieves high predictive performance, with an accuracy of 99.64% on training data and 98.75% on testing data, with precision, recall, and F1-score all exceeding 98%. These findings highlight the effectiveness of ensemble learning in mental health analytics and underscore its potential for early detection and intervention strategies.
Abstract:Accurate diagnosis of brain disorders such as Alzheimer's disease and brain tumors remains a critical challenge in medical imaging. Conventional methods based on manual MRI analysis are often inefficient and error-prone. To address this, we propose DGG-XNet, a hybrid deep learning model integrating VGG16 and DenseNet121 to enhance feature extraction and classification. DenseNet121 promotes feature reuse and efficient gradient flow through dense connectivity, while VGG16 contributes strong hierarchical spatial representations. Their fusion enables robust multiclass classification of neurological conditions. Grad-CAM is applied to visualize salient regions, enhancing model transparency. Trained on a combined dataset from BraTS 2021 and Kaggle, DGG-XNet achieved a test accuracy of 91.33\%, with precision, recall, and F1-score all exceeding 91\%. These results highlight DGG-XNet's potential as an effective and interpretable tool for computer-aided diagnosis (CAD) of neurodegenerative and oncological brain disorders.