Abstract:Recent advances in diffusion models have revolutionized text-guided image editing, yet existing editing methods face critical challenges in hyperparameter identification. To get the reasonable editing performance, these methods often require the user to brute-force tune multiple interdependent hyperparameters, such as inversion timesteps and attention modification, \textit{etc.} This process incurs high computational costs due to the huge hyperparameter search space. We consider searching optimal editing's hyperparameters as a sequential decision-making task within the diffusion denoising process. Specifically, we propose a reinforcement learning framework, which establishes a Markov Decision Process that dynamically adjusts hyperparameters across denoising steps, integrating editing objectives into a reward function. The method achieves time efficiency through proximal policy optimization while maintaining optimal hyperparameter configurations. Experiments demonstrate significant reduction in search time and computational overhead compared to existing brute-force approaches, advancing the practical deployment of a diffusion-based image editing framework in the real world.
Abstract:Chart visualizations are essential for data interpretation and communication; however, most charts are only accessible in image format and lack the corresponding data tables and supplementary information, making it difficult to alter their appearance for different application scenarios. To eliminate the need for original underlying data and information to perform chart editing, we propose ChartReformer, a natural language-driven chart image editing solution that directly edits the charts from the input images with the given instruction prompts. The key in this method is that we allow the model to comprehend the chart and reason over the prompt to generate the corresponding underlying data table and visual attributes for new charts, enabling precise edits. Additionally, to generalize ChartReformer, we define and standardize various types of chart editing, covering style, layout, format, and data-centric edits. The experiments show promising results for the natural language-driven chart image editing.
Abstract:We propose a neural network architecture that learns body part appearances for soccer player re-identification. Our model consists of a two-stream network (one stream for appearance map extraction and the other for body part map extraction) and a bilinear-pooling layer that generates and spatially pools the body part map. Each local feature of the body part map is obtained by a bilinear mapping of the corresponding local appearance and body part descriptors. Our novel representation yields a robust image-matching feature map, which results from combining the local similarities of the relevant body parts with the weighted appearance similarity. Our model does not require any part annotation on the SoccerNet-V3 re-identification dataset to train the network. Instead, we use a sub-network of an existing pose estimation network (OpenPose) to initialize the part substream and then train the entire network to minimize the triplet loss. The appearance stream is pre-trained on the ImageNet dataset, and the part stream is trained from scratch for the SoccerNet-V3 dataset. We demonstrate the validity of our model by showing that it outperforms state-of-the-art models such as OsNet and InceptionNet.
Abstract:Data extraction from line-chart images is an essential component of the automated document understanding process, as line charts are a ubiquitous data visualization format. However, the amount of visual and structural variations in multi-line graphs makes them particularly challenging for automated parsing. Existing works, however, are not robust to all these variations, either taking an all-chart unified approach or relying on auxiliary information such as legends for line data extraction. In this work, we propose LineFormer, a robust approach to line data extraction using instance segmentation. We achieve state-of-the-art performance on several benchmark synthetic and real chart datasets. Our implementation is available at https://github.com/TheJaeLal/LineFormer .