



Abstract:Beyond bibliometrics, there is interest in characterizing the evolution of the number of ideas in scientific papers. A common approach for investigating this involves analyzing the titles of publications to detect vocabulary changes over time. With the notion that phrases, or more specifically keyphrases, represent concepts, lexical diversity metrics are applied to phrased versions of the titles. Thus changes in lexical diversity are treated as indicators of shifts, and possibly expansion, of research. Therefore, optimizing detection of keyphrases is an important aspect of this process. Rather than just one, we propose to use multiple phrase detection models with the goal to produce a more comprehensive set of keyphrases from the source corpora. Another potential advantage to this approach is that the union and difference of these sets may provide automated techniques for identifying and omitting non-specific phrases. We compare the performance of several phrase detection models, analyze the keyphrase sets output of each, and calculate lexical diversity of corpora variants incorporating keyphrases from each model, using four common lexical diversity metrics.




Abstract:Services and applications based on the Memento Aggregator can suffer from slow response times due to the federated search across web archives performed by the Memento infrastructure. In an effort to decrease the response times, we established a cache system and experimented with machine learning models to predict archival holdings. We reported on the experimental results in previous work and can now, after these optimizations have been in production for two years, evaluate their efficiency, based on long-term log data. During our investigation we find that the cache is very effective with a 70-80% cache hit rate for human-driven services. The machine learning prediction operates at an acceptable average recall level of 0.727 but our results also show that a more frequent retraining of the models is needed to further improve prediction accuracy.