Abstract:Large language models (LLMs) offer new opportunities for interacting with complex software artifacts, such as software models, through natural language. They present especially promising benefits for large software models that are difficult to grasp in their entirety, making traditional interaction and analysis approaches challenging. This paper investigates two approaches for leveraging LLMs to answer questions over software models: direct prompting, where the whole software model is provided in the context, and an agentic approach combining LLM-based agents with general-purpose file access tools. We evaluate these approaches using an Ecore metamodel designed for timing analysis and software optimization in automotive and embedded domains. Our findings show that while the agentic approach achieves accuracy comparable to direct prompting, it is significantly more efficient in terms of token usage. This efficiency makes the agentic approach particularly suitable for the automotive industry, where the large size of software models makes direct prompting infeasible, establishing LLM agents as not just a practical alternative but the only viable solution. Notably, the evaluation was conducted using small LLMs, which are more feasible to be executed locally - an essential advantage for meeting strict requirements around privacy, intellectual property protection, and regulatory compliance. Future work will investigate software models in diverse formats, explore more complex agent architectures, and extend agentic workflows to support not only querying but also modification of software models.
Abstract:Multimodal summarization integrating information from diverse data modalities presents a promising solution to aid the understanding of information within various processes. However, the application and advantages of multimodal summarization have not received much attention in model-based engineering (MBE), where it has become a cornerstone in the design and development of complex systems, leveraging formal models to improve understanding, validation and automation throughout the engineering lifecycle. UML and EMF diagrams in model-based engineering contain a large amount of multimodal information and intricate relational data. Hence, our study explores the application of multimodal large language models within the domain of model-based engineering to evaluate their capacity for understanding and identifying relationships, features, and functionalities embedded in UML and EMF diagrams. We aim to demonstrate the transformative potential benefits and limitations of multimodal summarization in improving productivity and accuracy in MBE practices. The proposed approach is evaluated within the context of automotive software development, while many promising state-of-art models were taken into account.