Abstract:Unmanned Aerial Vehicles (UAVs) are increasingly used for reforestation and forest monitoring, including seed dispersal in hard-to-reach terrains. However, a detailed understanding of the forest floor remains a challenge due to high natural variability, quickly changing environmental parameters, and ambiguous annotations due to unclear definitions. To address this issue, we adapt the Segment Anything Model (SAM), a vision foundation model with strong generalization capabilities, to segment forest floor objects such as tree stumps, vegetation, and woody debris. To this end, we employ parameter-efficient fine-tuning (PEFT) to fine-tune a small subset of additional model parameters while keeping the original weights fixed. We adjust SAM's mask decoder to generate masks corresponding to our dataset categories, allowing for automatic segmentation without manual prompting. Our results show that the adapter-based PEFT method achieves the highest mean intersection over union (mIoU), while Low-rank Adaptation (LoRA), with fewer parameters, offers a lightweight alternative for resource-constrained UAV platforms.
Abstract:The representation, or encoding, utilized in evolutionary algorithms has a substantial effect on their performance. Examination of the suitability of widely used representations for quality diversity optimization (QD) in robotic domains has yielded inconsistent results regarding the most appropriate encoding method. Given the domain-dependent nature of QD, additional evidence from other domains is necessary. This study compares the impact of several representations, including direct encoding, a dictionary-based representation, parametric encoding, compositional pattern producing networks, and cellular automata, on the generation of voxelized meshes in an architecture setting. The results reveal that some indirect encodings outperform direct encodings and can generate more diverse solution sets, especially when considering full phenotypic diversity. The paper introduces a multi-encoding QD approach that incorporates all evaluated representations in the same archive. Species of encodings compete on the basis of phenotypic features, leading to an approach that demonstrates similar performance to the best single-encoding QD approach. This is noteworthy, as it does not always require the contribution of the best-performing single encoding.