Abstract:Whisper has become the de-facto encoder for extracting general-purpose audio features in large audio-language models, where a 30-second clip is typically represented by 1500 frame features projected into an LLM. In contrast, audio-text embedding models like CLAP-based models have largely relied on alternative audio encoders (e.g., HTS-AT, PaSST), and have not leveraged Whisper effectively. We present WavLink, a compact audio-text embedding model that augments Whisper encoder with a learnable global token, trained jointly with a text encoder. Through a systematic study of design choices, including pretrained text encoders, loss functions, training modes, and data mixtures, we identify configurations that yield state-of-the-art retrieval performance. Our two-stage training recipe across three model sizes, combined with Matryoshka-style supervision, improves scalability, enabling 8x smaller embeddings with minimal performance drop. WavLink also demonstrates competitive performance on AIR-Bench with MCQs and zero-shot classification.
Abstract:Large language models (LLMs) have transformed NLP, yet their integration with audio remains underexplored -- despite audio's centrality to human communication. We introduce Falcon3-Audio, a family of Audio-Language Models (ALMs) built on instruction-tuned LLMs and Whisper encoders. Using a remarkably small amount of public audio data -- less than 30K hours (5K unique) -- Falcon3-Audio-7B matches the best reported performance among open-weight models on the MMAU benchmark, with a score of 64.14, matching R1-AQA, while distinguishing itself through superior data and parameter efficiency, single-stage training, and transparency. Notably, our smallest 1B model remains competitive with larger open models ranging from 2B to 13B parameters. Through extensive ablations, we find that common complexities -- such as curriculum learning, multiple audio encoders, and intricate cross-attention connectors -- are not required for strong performance, even compared to models trained on over 500K hours of data.