Abstract:Advancements in quantum computing have spurred significant interest in harnessing its potential for speedups over classical systems. However, noise remains a major obstacle to achieving reliable quantum algorithms. In this work, we present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers. Our method, with a natural connection to Evolutionary Strategies, guarantees resilience to parameter noise with minimal adjustments to commonly used optimization algorithms. Our approach is function-agnostic and adaptable to various quantum circuits, successfully demonstrated in quantum phase classification tasks. By developing provably guaranteed optimization theory with quantum circuits, our work opens new avenues for practical, robust applications of near-term quantum computers.
Abstract:In the field of quantum information, classical optimizers play an important role. From experimentalists optimizing their physical devices to theorists exploring variational quantum algorithms, many aspects of quantum information require the use of a classical optimizer. For this reason, there are many papers that benchmark the effectiveness of different optimizers for specific quantum optimization tasks and choices of parameterized algorithms. However, for researchers exploring new algorithms or physical devices, the insights from these studies don't necessarily translate. To address this concern, we compare the performance of classical optimizers across a series of partially-randomized tasks to more broadly sample the space of quantum optimization problems. We focus on local zeroth-order optimizers due to their generally favorable performance and query-efficiency on quantum systems. We discuss insights from these experiments that can help motivate future works to improve these optimizers for use on quantum systems.