Abstract:Multimodal audiovisual perception can enable new avenues for robotic manipulation, from better material classification to the imitation of demonstrations for which only audio signals are available (e.g., playing a tune by ear). However, to unlock such multimodal potential, robots need to learn the correlations between an object's visual appearance and the sound it generates when they interact with it. Such an active sensorimotor experience requires new interaction capabilities, representations, and exploration methods to guide the robot in efficiently building increasingly rich audiovisual knowledge. In this work, we present CAVER, a novel robot that builds and utilizes rich audiovisual representations of objects. CAVER includes three novel contributions: 1) a novel 3D printed end-effector, attachable to parallel grippers, that excites objects' audio responses, 2) an audiovisual representation that combines local and global appearance information with sound features, and 3) an exploration algorithm that uses and builds the audiovisual representation in a curiosity-driven manner that prioritizes interacting with high uncertainty objects to obtain good coverage of surprising audio with fewer interactions. We demonstrate that CAVER builds rich representations in different scenarios more efficiently than several exploration baselines, and that the learned audiovisual representation leads to significant improvements in material classification and the imitation of audio-only human demonstrations. https://caver-bot.github.io/
Abstract:Effective robotic systems for long-horizon human-robot collaboration must adapt to a wide range of human partners, whose physical behavior, willingness to assist, and understanding of the robot's capabilities may change over time. This demands a tightly coupled communication loop that grants both agents the flexibility to propose, accept, or decline requests as they coordinate toward completing the task effectively. We apply a Mixed-Initiative dialog paradigm to Collaborative human-roBot teaming and propose MICoBot, a system that handles the common scenario where both agents, using natural language, take initiative in formulating, accepting, or rejecting proposals on who can best complete different steps of a task. To handle diverse, task-directed dialog, and find successful collaborative strategies that minimize human effort, MICoBot makes decisions at three levels: (1) a meta-planner considers human dialog to formulate and code a high-level collaboration strategy, (2) a planner optimally allocates the remaining steps to either agent based on the robot's capabilities (measured by a simulation-pretrained affordance model) and the human's estimated availability to help, and (3) an action executor decides the low-level actions to perform or words to say to the human. Our extensive evaluations in simulation and real-world -- on a physical robot with 18 unique human participants over 27 hours -- demonstrate the ability of our method to effectively collaborate with diverse human users, yielding significantly improved task success and user experience than a pure LLM baseline and other agent allocation models. See additional videos and materials at https://robin-lab.cs.utexas.edu/MicoBot/.