Abstract:Deep learning (DL) has achieved remarkable progress in the field of medical imaging. However, adapting DL models to medical tasks remains a significant challenge, primarily due to two key factors: (1) architecture selection, as different tasks necessitate specialized model designs, and (2) weight initialization, which directly impacts the convergence speed and final performance of the models. Although transfer learning from ImageNet is a widely adopted strategy, its effectiveness is constrained by the substantial differences between natural and medical images. To address these challenges, we introduce Medical Neural Network Search (MedNNS), the first Neural Network Search framework for medical imaging applications. MedNNS jointly optimizes architecture selection and weight initialization by constructing a meta-space that encodes datasets and models based on how well they perform together. We build this space using a Supernetwork-based approach, expanding the model zoo size by 51x times over previous state-of-the-art (SOTA) methods. Moreover, we introduce rank loss and Fr\'echet Inception Distance (FID) loss into the construction of the space to capture inter-model and inter-dataset relationships, thereby achieving more accurate alignment in the meta-space. Experimental results across multiple datasets demonstrate that MedNNS significantly outperforms both ImageNet pre-trained DL models and SOTA Neural Architecture Search (NAS) methods, achieving an average accuracy improvement of 1.7% across datasets while converging substantially faster. The code and the processed meta-space is available at https://github.com/BioMedIA-MBZUAI/MedNNS.
Abstract:There has been a surge in optimizing edge Deep Neural Networks (DNNs) for accuracy and efficiency using traditional optimization techniques such as pruning, and more recently, employing automatic design methodologies. However, the focus of these design techniques has often overlooked critical metrics such as fairness, robustness, and generalization. As a result, when evaluating SOTA edge DNNs' performance in image classification using the FACET dataset, we found that they exhibit significant accuracy disparities (14.09%) across 10 different skin tones, alongside issues of non-robustness and poor generalizability. In response to these observations, we introduce Mixture-of-Experts-based Neural Architecture Search (MoENAS), an automatic design technique that navigates through a space of mixture of experts to discover accurate, fair, robust, and general edge DNNs. MoENAS improves the accuracy by 4.02% compared to SOTA edge DNNs and reduces the skin tone accuracy disparities from 14.09% to 5.60%, while enhancing robustness by 3.80% and minimizing overfitting to 0.21%, all while keeping model size close to state-of-the-art models average size (+0.4M). With these improvements, MoENAS establishes a new benchmark for edge DNN design, paving the way for the development of more inclusive and robust edge DNNs.
Abstract:Vision Transformers have enabled recent attention-based Deep Learning (DL) architectures to achieve remarkable results in Computer Vision (CV) tasks. However, due to the extensive computational resources required, these architectures are rarely implemented on resource-constrained platforms. Current research investigates hybrid handcrafted convolution-based and attention-based models for CV tasks such as image classification and object detection. In this paper, we propose HyT-NAS, an efficient Hardware-aware Neural Architecture Search (HW-NAS) including hybrid architectures targeting vision tasks on tiny devices. HyT-NAS improves state-of-the-art HW-NAS by enriching the search space and enhancing the search strategy as well as the performance predictors. Our experiments show that HyT-NAS achieves a similar hypervolume with less than ~5x training evaluations. Our resulting architecture outperforms MLPerf MobileNetV1 by 6.3% accuracy improvement with 3.5x less number of parameters on Visual Wake Words.