Abstract:Signal separation in the passive underwater acoustic domain has heavily relied on deep learning techniques to isolate ship radiated noise. However, the separation networks commonly used in this domain stem from speech separation applications and may not fully consider the unique aspects of underwater acoustics beforehand, such as the influence of different propagation media, signal frequencies and modulation characteristics. This oversight highlights the need for tailored approaches that account for the specific characteristics of underwater sound propagation. This study introduces a novel temporal network designed to separate ship radiated noise by employing a dual-path model and a feature decoupling approach. The mixed signals' features are transformed into a space where they exhibit greater independence, with each dimension's significance decoupled. Subsequently, a fusion of local and global attention mechanisms is employed in the separation layer. Extensive comparisons showcase the effectiveness of this method when compared to other prevalent network models, as evidenced by its performance in the ShipsEar and DeepShip datasets.
Abstract:Compressive sensing (CS) has been applied to estimate the direction of arrival (DOA) in underwater acoustics. However, the key problem needed to be resolved in a {multipath} propagation environment is to suppress the interferences between the raypaths. Thus, in this paper, {a subspace-based compressive sensing algorithm that formulates the statistic information of the signal subspace in a CS framework is proposed.} The experiment results show that (1) the proposed algorithm enables the separation of raypaths that arrive closely at the {receiver} array and (2) the existing algorithms fail, especially in a low signal-to-noise ratio (SNR) environment.
Abstract:The principal component analysis network (PCANet), which is one of the recently proposed deep learning architectures, achieves the state-of-the-art classification accuracy in various databases. However, the explanation of the PCANet is lacked. In this paper, we try to explain why PCANet works well from energy perspective point of view based on a set of experiments. The impact of various parameters on the error rate of PCANet is analyzed in depth. It was found that this error rate is correlated with the logarithm of energy of image. The proposed energy explanation approach can be used as a testing method for checking if every step of the constructed networks is necessary.
Abstract:In order to classify the nonlinear feature with linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network (KPCANet) is proposed. First, mapping the data into higher space with kernel principal component analysis to make the data linearly separable. Then building a two-layer KPCANet to obtain the principal components of image. Finally, classifying the principal components with linearly classifier. Experimental results show that the proposed KPCANet is effective in face recognition, object recognition and hand-writing digits recognition, it also outperforms principal component analysis network (PCANet) generally as well. Besides, KPCANet is invariant to illumination and stable to occlusion and slight deformation.
Abstract:Texture plays an important role in many image analysis applications. In this paper, we give a performance evaluation of color texture classification by performing wavelet scattering network in various color spaces. Experimental results on the KTH_TIPS_COL database show that opponent RGB based wavelet scattering network outperforms other color spaces. Therefore, when dealing with the problem of color texture classification, opponent RGB based wavelet scattering network is recommended.