Abstract:Large language models (LLMs) have shown strong capabilities across diverse decision-making tasks. However, existing approaches often overlook the specialization differences among available models, treating all LLMs as uniformly applicable regardless of task characteristics. This limits their ability to adapt to varying reasoning demands and task complexities. In this work, we propose Task-Aware LLM Council (TALC), a task-adaptive decision framework that integrates a council of LLMs with Monte Carlo Tree Search (MCTS) to enable dynamic expert selection and efficient multi-step planning. Each LLM is equipped with a structured success memory profile derived from prior task trajectories, enabling semantic matching between current reasoning context and past successes. At each decision point, TALC routes control to the most contextually appropriate model and estimates node value using a dual-signal mechanism that fuses model-based evaluations with historical utility scores. These signals are adaptively weighted based on intra-node variance and used to guide MCTS selection, allowing the system to balance exploration depth with planning confidence. Experiments on WebShop, HumanEval, and the Game of 24 demonstrate that TALC achieves superior task success rates and improved search efficiency compared to strong baselines, validating the benefits of specialization-aware routing and adaptive planning.
Abstract:The computational inefficiency of spiking neural networks (SNNs) is primarily due to the sequential updates of membrane potential, which becomes more pronounced during extended encoding periods compared to artificial neural networks (ANNs). This highlights the need to parallelize SNN computations effectively to leverage available hardware parallelism. To address this, we propose Membrane Potential Estimation Parallel Spiking Neurons (MPE-PSN), a parallel computation method for spiking neurons that enhances computational efficiency by enabling parallel processing while preserving the intrinsic dynamic characteristics of SNNs. Our approach exhibits promise for enhancing computational efficiency, particularly under conditions of elevated neuron density. Empirical experiments demonstrate that our method achieves state-of-the-art (SOTA) accuracy and efficiency on neuromorphic datasets without requiring additional training parameters. Codes are available at~\url{https://github.com/chrazqee/MPE-PSN}.