Abstract:Reinforcement learning (RL) has significantly advanced code generation for large language models (LLMs). However, current paradigms rely on outcome-based rewards from test cases, neglecting the quality of the intermediate reasoning process. While supervising the reasoning process directly is a promising direction, it is highly susceptible to reward hacking, where the policy model learns to exploit the reasoning reward signal without improving final outcomes. To address this, we introduce a unified framework that can effectively incorporate the quality of the reasoning process during RL. First, to enable reasoning evaluation, we develop LCB-RB, a benchmark comprising preference pairs of superior and inferior reasoning processes. Second, to accurately score reasoning quality, we introduce an Optimized-Degraded based (OD-based) method for reward model training. This method generates high-quality preference pairs by systematically optimizing and degrading initial reasoning paths along curated dimensions of reasoning quality, such as factual accuracy, logical rigor, and coherence. A 7B parameter reward model with this method achieves state-of-the-art (SOTA) performance on LCB-RB and generalizes well to other benchmarks. Finally, we introduce Posterior-GRPO (P-GRPO), a novel RL method that conditions process-based rewards on task success. By selectively applying rewards to the reasoning processes of only successful outcomes, P-GRPO effectively mitigates reward hacking and aligns the model's internal reasoning with final code correctness. A 7B parameter model with P-GRPO achieves superior performance across diverse code generation tasks, outperforming outcome-only baselines by 4.5%, achieving comparable performance to GPT-4-Turbo. We further demonstrate the generalizability of our approach by extending it to mathematical tasks. Our models, dataset, and code are publicly available.
Abstract:Large language models (LLMs) have achieved impressive performance in code generation. However, due to the long-tail distribution of LLMs' training data, low-frequency terms are typically underrepresented in the training process. Consequently, LLMs often misunderstand or overlook problem-specific, low-frequency keywords during code generation, compromising the accuracy of the generated code. To address this, we propose a novel technique named SEK(\textbf{S}elf-\textbf{E}xplained \textbf{K}eywords), which empowers an LLM for better code generation by extracting and explaining the key terms in the problem description with the LLM itself and ranking them based on frequency. Comprehensive experiments across three benchmarks, i.e., HumanEval(+), MBPP(+), and APPS, with five representative LLMs, show that SEK can significantly improve LLMs in code generation, yielding substantial and consistent gains. For instance, SEK improves the Pass@1 of DeepSeek-Coder-V2-Instruct from 85.4\% to 93.3\% on the Humaneval benchmark. Further analysis confirms that SEK enables the LLMs to shift their attention from low-frequency keywords to their corresponding high-frequency counterparts.