Abstract:In recent years there has been significant effort to adapt the key tools and ideas in convex optimization to the Riemannian setting. One key challenge has remained: Is there a Nesterov-like accelerated gradient method for geodesically convex functions on a Riemannian manifold? Recent work has given partial answers and the hope was that this ought to be possible. Here we dash these hopes. We prove that in a noisy setting, there is no analogue of accelerated gradient descent for geodesically convex functions on the hyperbolic plane. Our results apply even when the noise is exponentially small. The key intuition behind our proof is short and simple: In negatively curved spaces, the volume of a ball grows so fast that information about the past gradients is not useful in the future.
Abstract:Markov random fields area popular model for high-dimensional probability distributions. Over the years, many mathematical, statistical and algorithmic problems on them have been studied. Until recently, the only known algorithms for provably learning them relied on exhaustive search, correlation decay or various incoherence assumptions. Bresler gave an algorithm for learning general Ising models on bounded degree graphs. His approach was based on a structural result about mutual information in Ising models. Here we take a more conceptual approach to proving lower bounds on the mutual information through setting up an appropriate zero-sum game. Our proof generalizes well beyond Ising models, to arbitrary Markov random fields with higher order interactions. As an application, we obtain algorithms for learning Markov random fields on bounded degree graphs on $n$ nodes with $r$-order interactions in $n^r$ time and $\log n$ sample complexity. The sample complexity is information theoretically optimal up to the dependence on the maximum degree. The running time is nearly optimal under standard conjectures about the hardness of learning parity with noise.