Abstract:Water managers in the western United States (U.S.) rely on longterm forecasts of temperature and precipitation to prepare for droughts and other wet weather extremes. To improve the accuracy of these longterm forecasts, the Bureau of Reclamation and the National Oceanic and Atmospheric Administration (NOAA) launched the Subseasonal Climate Forecast Rodeo, a year-long real-time forecasting challenge, in which participants aimed to skillfully predict temperature and precipitation in the western U.S. two to four weeks and four to six weeks in advance. Here we present and evaluate our machine learning approach to the Rodeo and release our SubseasonalRodeo dataset, collected to train and evaluate our forecasting system. Our system is an ensemble of two regression models. The first integrates the diverse collection of meteorological measurements and dynamic model forecasts in the SubseasonalRodeo dataset and prunes irrelevant predictors using a customized multitask model selection procedure. The second uses only historical measurements of the target variable (temperature or precipitation) and introduces multitask nearest neighbor features into a weighted local linear regression. Each model alone is significantly more accurate than the operational U.S. Climate Forecasting System (CFSv2), and our ensemble skill exceeds that of the top Rodeo competitor for each target variable and forecast horizon. We hope that both our dataset and our methods will serve as valuable benchmarking tools for the subseasonal forecasting problem.
Abstract:Double machine learning provides $\sqrt{n}$-consistent estimates of parameters of interest even when high-dimensional or nonparametric nuisance parameters are estimated at an $n^{-1/4}$ rate. The key is to employ Neyman-orthogonal moment equations which are first-order insensitive to perturbations in the nuisance parameters. We show that the $n^{-1/4}$ requirement can be improved to $n^{-1/(2k+2)}$ by employing a $k$-th order notion of orthogonality that grants robustness to more complex or higher-dimensional nuisance parameters. In the partially linear regression setting popular in causal inference, we show that we can construct second-order orthogonal moments if and only if the treatment residual is not normally distributed. Our proof relies on Stein's lemma and may be of independent interest. We conclude by demonstrating the robustness benefits of an explicit doubly-orthogonal estimation procedure for treatment effect.
Abstract:Estimators computed from adaptively collected data do not behave like their non-adaptive brethren. Rather, the sequential dependence of the collection policy can lead to severe distributional biases that persist even in the infinite data limit. We develop a general method -- $\mathbf{W}$-decorrelation -- for transforming the bias of adaptive linear regression estimators into variance. The method uses only coarse-grained information about the data collection policy and does not need access to propensity scores or exact knowledge of the policy. We bound the finite-sample bias and variance of the $\mathbf{W}$-estimator and develop asymptotically correct confidence intervals based on a novel martingale central limit theorem. We then demonstrate the empirical benefits of the generic $\mathbf{W}$-decorrelation procedure in two different adaptive data settings: the multi-armed bandit and the autoregressive time series.
Abstract:An important task in computational statistics and machine learning is to approximate a posterior distribution $p(x)$ with an empirical measure supported on a set of representative points $\{x_i\}_{i=1}^n$. This paper focuses on methods where the selection of points is essentially deterministic, with an emphasis on achieving accurate approximation when $n$ is small. To this end, we present `Stein Points'. The idea is to exploit either a greedy or a conditional gradient method to iteratively minimise a kernel Stein discrepancy between the empirical measure and $p(x)$. Our empirical results demonstrate that Stein Points enable accurate approximation of the posterior at modest computational cost. In addition, theoretical results are provided to establish convergence of the method.
Abstract:We propose DeepMiner, a framework to discover interpretable representations in deep neural networks and to build explanations for medical predictions. By probing convolutional neural networks (CNNs) trained to classify cancer in mammograms, we show that many individual units in the final convolutional layer of a CNN respond strongly to diseased tissue concepts specified by the BI-RADS lexicon. After expert annotation of the interpretable units, our proposed method is able to generate explanations for CNN mammogram classification that are correlated with ground truth radiology reports on the DDSM dataset. We show that DeepMiner not only enables better understanding of the nuances of CNN classification decisions, but also possibly discovers new visual knowledge relevant to medical diagnosis.
Abstract:This work interprets the internal representations of deep neural networks trained for classification of diseased tissue in 2D mammograms. We propose an expert-in-the-loop interpretation method to label the behavior of internal units in convolutional neural networks (CNNs). Expert radiologists identify that the visual patterns detected by the units are correlated with meaningful medical phenomena such as mass tissue and calcificated vessels. We demonstrate that several trained CNN models are able to produce explanatory descriptions to support the final classification decisions. We view this as an important first step toward interpreting the internal representations of medical classification CNNs and explaining their predictions.
Abstract:Stein's method for measuring convergence to a continuous target distribution relies on an operator characterizing the target and Stein factor bounds on the solutions of an associated differential equation. While such operators and bounds are readily available for a diversity of univariate targets, few multivariate targets have been analyzed. We introduce a new class of characterizing operators based on Ito diffusions and develop explicit multivariate Stein factor bounds for any target with a fast-coupling Ito diffusion. As example applications, we develop computable and convergence-determining diffusion Stein discrepancies for log-concave, heavy-tailed, and multimodal targets and use these quality measures to select the hyperparameters of biased Markov chain Monte Carlo (MCMC) samplers, compare random and deterministic quadrature rules, and quantify bias-variance tradeoffs in approximate MCMC. Our results establish a near-linear relationship between diffusion Stein discrepancies and Wasserstein distances, improving upon past work even for strongly log-concave targets. The exposed relationship between Stein factors and Markov process coupling may be of independent interest.
Abstract:Approximate Markov chain Monte Carlo (MCMC) offers the promise of more rapid sampling at the cost of more biased inference. Since standard MCMC diagnostics fail to detect these biases, researchers have developed computable Stein discrepancy measures that provably determine the convergence of a sample to its target distribution. This approach was recently combined with the theory of reproducing kernels to define a closed-form kernel Stein discrepancy (KSD) computable by summing kernel evaluations across pairs of sample points. We develop a theory of weak convergence for KSDs based on Stein's method, demonstrate that commonly used KSDs fail to detect non-convergence even for Gaussian targets, and show that kernels with slowly decaying tails provably determine convergence for a large class of target distributions. The resulting convergence-determining KSDs are suitable for comparing biased, exact, and deterministic sample sequences and simpler to compute and parallelize than alternative Stein discrepancies. We use our tools to compare biased samplers, select sampler hyperparameters, and improve upon existing KSD approaches to one-sample hypothesis testing and sample quality improvement.
Abstract:The pairwise influence matrix of Dobrushin has long been used as an analytical tool to bound the rate of convergence of Gibbs sampling. In this work, we use Dobrushin influence as the basis of a practical tool to certify and efficiently improve the quality of a discrete Gibbs sampler. Our Dobrushin-optimized Gibbs samplers (DoGS) offer customized variable selection orders for a given sampling budget and variable subset of interest, explicit bounds on total variation distance to stationarity, and certifiable improvements over the standard systematic and uniform random scan Gibbs samplers. In our experiments with joint image segmentation and object recognition, Markov chain Monte Carlo maximum likelihood estimation, and Ising model inference, DoGS consistently deliver higher-quality inferences with significantly smaller sampling budgets than standard Gibbs samplers.
Abstract:To improve the efficiency of Monte Carlo estimation, practitioners are turning to biased Markov chain Monte Carlo procedures that trade off asymptotic exactness for computational speed. The reasoning is sound: a reduction in variance due to more rapid sampling can outweigh the bias introduced. However, the inexactness creates new challenges for sampler and parameter selection, since standard measures of sample quality like effective sample size do not account for asymptotic bias. To address these challenges, we introduce a new computable quality measure based on Stein's method that quantifies the maximum discrepancy between sample and target expectations over a large class of test functions. We use our tool to compare exact, biased, and deterministic sample sequences and illustrate applications to hyperparameter selection, convergence rate assessment, and quantifying bias-variance tradeoffs in posterior inference.