Abstract:Convolutional neural network (CNN) is one of the most prominent architectures and algorithm in Deep Learning. It shows a remarkable improvement in the recognition and classification of objects. This method has also been proven to be very effective in a variety of computer vision and machine learning problems. As in other deep learning, however, training the CNN is interesting yet challenging. Recently, some metaheuristic algorithms have been used to optimize CNN using Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing and Harmony Search. In this paper, another type of metaheuristic algorithms with different strategy has been proposed, i.e. Microcanonical Annealing to optimize Convolutional Neural Network. The performance of the proposed method is tested using the MNIST and CIFAR-10 datasets. Although experiment results of MNIST dataset indicate the increase in computation time (1.02x - 1.38x), nevertheless this proposed method can considerably enhance the performance of the original CNN (up to 4.60\%). On the CIFAR10 dataset, currently, state of the art is 96.53\% using fractional pooling, while this proposed method achieves 99.14\%.
Abstract:A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent).