Abstract:Deforestation is one of the contributing factors to climate change. Climate change has a serious impact on human life, and it occurs due to emission of greenhouse gases, such as carbon dioxide, to the atmosphere. It is important to know the causes of deforestation for mitigation efforts, but there is a lack of data-driven research studies to predict these deforestation drivers. In this work, we propose a contrastive learning architecture, called Multimodal SuperCon, for classifying drivers of deforestation in Indonesia using satellite images obtained from Landsat 8. Multimodal SuperCon is an architecture which combines contrastive learning and multimodal fusion to handle the available deforestation dataset. Our proposed model outperforms previous work on driver classification, giving a 7% improvement in accuracy in comparison to a state-of-the-art rotation equivariant model for the same task.
Abstract:Convolutional neural network (CNN) is one of the most prominent architectures and algorithm in Deep Learning. It shows a remarkable improvement in the recognition and classification of objects. This method has also been proven to be very effective in a variety of computer vision and machine learning problems. As in other deep learning, however, training the CNN is interesting yet challenging. Recently, some metaheuristic algorithms have been used to optimize CNN using Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing and Harmony Search. In this paper, another type of metaheuristic algorithms with different strategy has been proposed, i.e. Microcanonical Annealing to optimize Convolutional Neural Network. The performance of the proposed method is tested using the MNIST and CIFAR-10 datasets. Although experiment results of MNIST dataset indicate the increase in computation time (1.02x - 1.38x), nevertheless this proposed method can considerably enhance the performance of the original CNN (up to 4.60\%). On the CIFAR10 dataset, currently, state of the art is 96.53\% using fractional pooling, while this proposed method achieves 99.14\%.
Abstract:Sleep signals from a polysomnographic database are sequences in nature. Commonly employed analysis and classification methods, however, ignored this fact and treated the sleep signals as non-sequence data. Treating the sleep signals as sequences, this paper compared two powerful unsupervised feature extractors and three sequence-based classifiers regarding accuracy and computational (training and testing) time after 10-folds cross-validation. The compared feature extractors are Deep Belief Networks (DBN) and Fuzzy C-Means (FCM) clustering. Whereas the compared sequence-based classifiers are Hidden Markov Models (HMM), Conditional Random Fields (CRF) and its variants, i.e., Hidden-state CRF (HCRF) and Latent-Dynamic CRF (LDCRF); and Conditional Neural Fields (CNF) and its variant (LDCNF). In this study, we use two datasets. The first dataset is an open (public) polysomnographic dataset downloadable from the Internet, while the second dataset is our polysomnographic dataset (also available for download). For the first dataset, the combination of FCM and CNF gives the highest accuracy (96.75\%) with relatively short training time (0.33 hours). For the second dataset, the combination of DBN and CRF gives the accuracy of 99.96\% but with 1.02 hours training time, whereas the combination of DBN and CNF gives slightly less accuracy (99.69\%) but also less computation time (0.89 hours).
Abstract:A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent).
Abstract:In 2015, stroke was the number one cause of death in Indonesia. The majority type of stroke is ischemic. The standard tool for diagnosing stroke is CT-Scan. For developing countries like Indonesia, the availability of CT-Scan is very limited and still relatively expensive. Because of the availability, another device that potential to diagnose stroke in Indonesia is EEG. Ischemic stroke occurs because of obstruction that can make the cerebral blood flow (CBF) on a person with stroke has become lower than CBF on a normal person (control) so that the EEG signal have a deceleration. On this study, we perform the ability of 1D Convolutional Neural Network (1DCNN) to construct classification model that can distinguish the EEG and EOG stroke data from EEG and EOG control data. To accelerate training process our model we use Batch Normalization. Involving 62 person data object and from leave one out the scenario with five times repetition of measurement we obtain the average of accuracy 0.86 (F-Score 0.861) only at 200 epoch. This result is better than all over shallow and popular classifiers as the comparator (the best result of accuracy 0.69 and F-Score 0.72 ). The feature used in our study were only 24 handcrafted feature with simple feature extraction process.
Abstract:Sleep stages pattern provides important clues in diagnosing the presence of sleep disorder. By analyzing sleep stages pattern and extracting its features from EEG, EOG, and EMG signals, we can classify sleep stages. This study presents a novel classification model for predicting sleep stages with a high accuracy. The main idea is to combine the generative capability of Deep Belief Network (DBN) with a discriminative ability and sequence pattern recognizing capability of Long Short-term Memory (LSTM). We use DBN that is treated as an automatic higher level features generator. The input to DBN is 28 "handcrafted" features as used in previous sleep stages studies. We compared our method with other techniques which combined DBN with Hidden Markov Model (HMM).In this study, we exploit the sequence or time series characteristics of sleep dataset. To the best of our knowledge, most of the present sleep analysis from polysomnogram relies only on single instanced label (nonsequence) for classification. In this study, we used two datasets: an open data set that is treated as a benchmark; the other dataset is our sleep stages dataset (available for download) to verify the results further. Our experiments showed that the combination of DBN with LSTM gives better overall accuracy 98.75\% (Fscore=0.9875) for benchmark dataset and 98.94\% (Fscore=0.9894) for MKG dataset. This result is better than the state of the art of sleep stages classification that was 91.31\%.