Abstract:Human crowd simulation in virtual reality (VR) is a powerful tool with potential applications including emergency evacuation training and assessment of building layout. While haptic feedback in VR enhances immersive experience, its effect on walking behavior in dense and dynamic pedestrian flows is unknown. Through a user study, we investigated how haptic feedback changes user walking motion in crowded pedestrian flows in VR. The results indicate that haptic feedback changed users' collision avoidance movements, as measured by increased walking trajectory length and change in pelvis angle. The displacements of users' lateral position and pelvis angle were also increased in the instantaneous response to a collision with a non-player character (NPC), even when the NPC was inside the field of view. Haptic feedback also enhanced users' awareness and visual exploration when an NPC approached from the side and back. Furthermore, variation in walking speed was increased by the haptic feedback. These results suggested that the haptic feedback enhanced users' sensitivity to a collision in VR environment.