Abstract:Socio-economic indicators like regional GDP, population, and education levels, are crucial to shaping policy decisions and fostering sustainable development. This research introduces GeoReg a regression model that integrates diverse data sources, including satellite imagery and web-based geospatial information, to estimate these indicators even for data-scarce regions such as developing countries. Our approach leverages the prior knowledge of large language model (LLM) to address the scarcity of labeled data, with the LLM functioning as a data engineer by extracting informative features to enable effective estimation in few-shot settings. Specifically, our model obtains contextual relationships between data features and the target indicator, categorizing their correlations as positive, negative, mixed, or irrelevant. These features are then fed into the linear estimator with tailored weight constraints for each category. To capture nonlinear patterns, the model also identifies meaningful feature interactions and integrates them, along with nonlinear transformations. Experiments across three countries at different stages of development demonstrate that our model outperforms baselines in estimating socio-economic indicators, even for low-income countries with limited data availability.
Abstract:The increasing frequency and intensity of natural disasters demand more sophisticated approaches for rapid and precise damage assessment. To tackle this issue, researchers have developed various methods on disaster benchmark datasets from satellite imagery to aid in detecting disaster damage. However, the diverse nature of geographical landscapes and disasters makes it challenging to apply existing methods to regions unseen during training. We present DAVI (Disaster Assessment with VIsion foundation model), which overcomes domain disparities and detects structural damage (e.g., building) without requiring ground-truth labels of the target region. DAVI integrates task-specific knowledge from a model trained on source regions with an image segmentation foundation model to generate pseudo labels of possible damage in the target region. It then employs a two-stage refinement process, targeting both the pixel and overall image, to more accurately pinpoint changes in disaster-struck areas based on before-and-after images. Comprehensive evaluations demonstrate that DAVI achieves exceptional performance across diverse terrains (e.g., USA and Mexico) and disaster types (e.g., wildfires, hurricanes, and earthquakes). This confirms its robustness in assessing disaster impact without dependence on ground-truth labels.