Abstract:Generalized category discovery (GCD) is essential for improving deep learning models' robustness in open-world scenarios by clustering unlabeled data containing both known and novel categories. Traditional GCD methods focus on minimizing intra-cluster variations, often sacrificing manifold capacity, which limits the richness of intra-class representations. In this paper, we propose a novel approach, Maximum Token Manifold Capacity (MTMC), that prioritizes maximizing the manifold capacity of class tokens to preserve the diversity and complexity of data. MTMC leverages the nuclear norm of singular values as a measure of manifold capacity, ensuring that the representation of samples remains informative and well-structured. This method enhances the discriminability of clusters, allowing the model to capture detailed semantic features and avoid the loss of critical information during clustering. Through theoretical analysis and extensive experiments on coarse- and fine-grained datasets, we demonstrate that MTMC outperforms existing GCD methods, improving both clustering accuracy and the estimation of category numbers. The integration of MTMC leads to more complete representations, better inter-class separability, and a reduction in dimensional collapse, establishing MTMC as a vital component for robust open-world learning. Code is in github.com/lytang63/MTMC.
Abstract:Foundation models have made incredible strides in achieving zero-shot or few-shot generalization, leveraging prompt engineering to mimic the problem-solving approach of human intelligence. However, when it comes to some foundation models like Segment Anything, there is still a challenge in performing well on out-of-distribution data, including camouflaged and medical images. Inconsistent prompting strategies during fine-tuning and testing further compound the issue, leading to decreased performance. Drawing inspiration from how human cognition processes new environments, we introduce SlotSAM, a method that reconstructs features from the encoder in a self-supervised manner to create object-centric representations. These representations are then integrated into the foundation model, bolstering its object-level perceptual capabilities while reducing the impact of distribution-related variables. The beauty of SlotSAM lies in its simplicity and adaptability to various tasks, making it a versatile solution that significantly enhances the generalization abilities of foundation models. Through limited parameter fine-tuning in a bootstrap manner, our approach paves the way for improved generalization in novel environments. The code is available at github.com/lytang63/SlotSAM.