Abstract:The rise of bot accounts on social media poses significant risks to public discourse. To address this threat, modern bot detectors increasingly rely on Graph Neural Networks (GNNs). However, the effectiveness of these GNN-based detectors in real-world settings remains poorly understood. In practice, attackers continuously adapt their strategies as well as must operate under domain-specific and temporal constraints, which can fundamentally limit the applicability of existing attack methods. As a result, there is a critical need for robust GNN-based bot detection methods under realistic, constraint-aware attack scenarios. To address this gap, we introduce BOCLOAK to systematically evaluate the robustness of GNN-based social bot detection via both edge editing and node injection adversarial attacks under realistic constraints. BOCLOAK constructs a probability measure over spatio-temporal neighbor features and learns an optimal transport geometry that separates human and bot behaviors. It then decodes transport plans into sparse, plausible edge edits that evade detection while obeying real-world constraints. We evaluate BOCLOAK across three social bot datasets, five state-of-the-art bot detectors, three adversarial defenses, and compare it against four leading graph adversarial attack baselines. BOCLOAK achieves up to 80.13% higher attack success rates while using 99.80% less GPU memory under realistic real-world constraints. Most importantly, BOCLOAK shows that optimal transport provides a lightweight, principled framework for bridging the gap between adversarial attacks and real-world bot detection.
Abstract:The rise of graph-structured data has driven interest in graph learning and synthetic data generation. While successful in text and image domains, synthetic graph generation remains challenging -- especially for real-world graphs with complex, heterogeneous schemas. Existing research has focused mostly on homogeneous structures with simple attributes, limiting their usefulness and relevance for application domains requiring semantic fidelity. In this research, we introduce ProvCreator, a synthetic graph framework designed for complex heterogeneous graphs with high-dimensional node and edge attributes. ProvCreator formulates graph synthesis as a sequence generation task, enabling the use of transformer-based large language models. It features a versatile graph-to-sequence encoder-decoder that 1. losslessly encodes graph structure and attributes, 2. efficiently compresses large graphs for contextual modeling, and 3. supports end-to-end, learnable graph generation. To validate our research, we evaluate ProvCreator on two challenging domains: system provenance graphs in cybersecurity and knowledge graphs from IntelliGraph Benchmark Dataset. In both cases, ProvCreator captures intricate dependencies between structure and semantics, enabling the generation of realistic and privacy-aware synthetic datasets.




Abstract:The black-box nature of complex Neural Network (NN)-based models has hindered their widespread adoption in security domains due to the lack of logical explanations and actionable follow-ups for their predictions. To enhance the transparency and accountability of Graph Neural Network (GNN) security models used in system provenance analysis, we propose PROVEXPLAINER, a framework for projecting abstract GNN decision boundaries onto interpretable feature spaces. We first replicate the decision-making process of GNNbased security models using simpler and explainable models such as Decision Trees (DTs). To maximize the accuracy and fidelity of the surrogate models, we propose novel graph structural features founded on classical graph theory and enhanced by extensive data study with security domain knowledge. Our graph structural features are closely tied to problem-space actions in the system provenance domain, which allows the detection results to be explained in descriptive, human language. PROVEXPLAINER allowed simple DT models to achieve 95% fidelity to the GNN on program classification tasks with general graph structural features, and 99% fidelity on malware detection tasks with a task-specific feature package tailored for direct interpretation. The explanations for malware classification are demonstrated with case studies of five real-world malware samples across three malware families.