Abstract:Advances in generative modeling have made it increasingly easy to fabricate realistic portrayals of individuals, creating serious risks for security, communication, and public trust. Detecting such person-driven manipulations requires systems that not only distinguish altered content from authentic media but also provide clear and reliable reasoning. In this paper, we introduce TriDF, a comprehensive benchmark for interpretable DeepFake detection. TriDF contains high-quality forgeries from advanced synthesis models, covering 16 DeepFake types across image, video, and audio modalities. The benchmark evaluates three key aspects: Perception, which measures the ability of a model to identify fine-grained manipulation artifacts using human-annotated evidence; Detection, which assesses classification performance across diverse forgery families and generators; and Hallucination, which quantifies the reliability of model-generated explanations. Experiments on state-of-the-art multimodal large language models show that accurate perception is essential for reliable detection, but hallucination can severely disrupt decision-making, revealing the interdependence of these three aspects. TriDF provides a unified framework for understanding the interaction between detection accuracy, evidence identification, and explanation reliability, offering a foundation for building trustworthy systems that address real-world synthetic media threats.
Abstract:Face anti-spoofing (FAS) aims to construct a robust system that can withstand diverse attacks. While recent efforts have concentrated mainly on cross-domain generalization, two significant challenges persist: limited semantic understanding of attack types and training redundancy across domains. We address the first by integrating vision-language models (VLMs) to enhance the perception of visual input. For the second challenge, we employ a meta-domain strategy to learn a unified model that generalizes well across multiple domains. Our proposed InstructFLIP is a novel instruction-tuned framework that leverages VLMs to enhance generalization via textual guidance trained solely on a single domain. At its core, InstructFLIP explicitly decouples instructions into content and style components, where content-based instructions focus on the essential semantics of spoofing, and style-based instructions consider variations related to the environment and camera characteristics. Extensive experiments demonstrate the effectiveness of InstructFLIP by outperforming SOTA models in accuracy and substantially reducing training redundancy across diverse domains in FAS. Project website is available at https://kunkunlin1221.github.io/InstructFLIP.