Abstract:We consider a node-monitor pair, where the node's state varies with time. The monitor needs to track the node's state at all times; however, there is a fixed cost for each state query. So the monitor may instead predict the state using time-series forecasting methods, including time-series foundation models (TSFMs), and query only when prediction uncertainty is high. Since query decisions influence prediction accuracy, determining when to query is nontrivial. A natural approach is a greedy policy that predicts when the expected prediction loss is below the query cost and queries otherwise. We analyze this policy in a Markovian setting, where the optimal (OPT) strategy is a state-dependent threshold policy minimizing the time-averaged sum of query cost and prediction losses. We show that, in general, the greedy policy is suboptimal and can have an unbounded competitive ratio, but under common conditions such as identically distributed transition probabilities, it performs close to OPT. For the case of unknown transition probabilities, we further propose a projected stochastic gradient descent (PSGD)-based learning variant of the greedy policy, which achieves a favorable predict-query tradeoff with improved computational efficiency compared to OPT.
Abstract:Dense word vectors or 'word embeddings' which encode semantic properties of words, have now become integral to NLP tasks like Machine Translation (MT), Question Answering (QA), Word Sense Disambiguation (WSD), and Information Retrieval (IR). In this paper, we use various existing approaches to create multiple word embeddings for 14 Indian languages. We place these embeddings for all these languages, viz., Assamese, Bengali, Gujarati, Hindi, Kannada, Konkani, Malayalam, Marathi, Nepali, Odiya, Punjabi, Sanskrit, Tamil, and Telugu in a single repository. Relatively newer approaches that emphasize catering to context (BERT, ELMo, etc.) have shown significant improvements, but require a large amount of resources to generate usable models. We release pre-trained embeddings generated using both contextual and non-contextual approaches. We also use MUSE and XLM to train cross-lingual embeddings for all pairs of the aforementioned languages. To show the efficacy of our embeddings, we evaluate our embedding models on XPOS, UPOS and NER tasks for all these languages. We release a total of 436 models using 8 different approaches. We hope they are useful for the resource-constrained Indian language NLP. The title of this paper refers to the famous novel 'A Passage to India' by E.M. Forster, published initially in 1924.